https://www.lydsy.com/JudgeOnline/problem.php?id=1951

先欧拉降幂

然后模数质因数分解

分别计算组合数的结果,中国剩余定理合并

#include<cmath>
#include<cstdio>
#include<iostream> using namespace std; const int mod=;
const int phi=mod-; typedef long long LL; int p[];
LL mul[][]; LL c[]; void pre()
{
p[]=;
p[]=;
p[]=;
p[]=;
for(int i=;i<=;++i)
{
mul[i][]=;
for(int j=;j<=;++j) mul[i][j]=mul[i][j-]*j%p[i];
}
} LL gcd(LL a,LL b)
{
return !b ? a : gcd(b,a%b);
} LL Pow(LL a,LL b,LL mod)
{
LL ans=;
for(;b;a=a*a%mod,b>>=)
if(b&) ans=ans*a%mod;
return ans;
} LL C(LL n,LL m,int i)
{
if(m>n) return ;
return mul[i][n]*Pow(mul[i][m],p[i]-,p[i])%p[i]*Pow(mul[i][n-m],p[i]-,p[i])%p[i];
} LL Lucas(LL n,LL m,int i)
{
if(m>n) return ;
LL ans=;
for(;m;n/=p[i],m/=p[i]) ans=(ans*C(n%p[i],m%p[i],i))%p[i];
return ans;
} void exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b) x=,y=;
else exgcd(b,a%b,y,x),y-=a/b*x;
} int main()
{
pre();
LL n,g;
cin>>n>>g;
if(gcd(g,mod)!=)
{
printf("");
return ;
}
int m=sqrt(n);
for(int i=;i<=m;++i)
if(n%i==)
{
for(int j=;j<=;++j) c[j]=(c[j]+Lucas(n,i,j))%p[j];
if(n/i!=i)
for(int j=;j<=;++j) c[j]=(c[j]+Lucas(n,n/i,j))%p[j];
}
LL ans=;
LL Mi,mi,x,y;
for(int i=;i<=;++i)
{
Mi=phi/p[i];
mi=p[i];
exgcd(Mi,mi,x,y);
x=(x%mi+mi)%mi;
if(!x) x+=mi;
ans+=c[i]*Mi*x;
}
ans=Pow(g,ans,mod);
cout<<ans;
}

bzoj千题计划323:bzoj1951: [Sdoi2010]古代猪文(Lucas+CRT+欧拉定理)的更多相关文章

  1. BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  2. P2480 [SDOI2010]古代猪文 Lucas+CRT合并

    \(\color{#0066ff}{ 题目描述 }\) 猪王国的文明源远流长,博大精深. iPig在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为N.当然,一种语言如果字数很多,字典也相应会 ...

  3. 【BZOJ1951】古代猪文(CRT,卢卡斯定理)

    [BZOJ1951]古代猪文(CRT,卢卡斯定理) 题面 BZOJ 洛谷 题解 要求什么很显然吧... \[Ans=G^{\sum_{k|N}{C_N^k}}\] 给定的模数是一个质数,要求解的东西相 ...

  4. 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT

    [BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...

  5. BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2194  Solved: 919[Submit][Status] ...

  6. [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  7. BZOJ1951[SDOI2010]古代猪文

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  8. BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】

    题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...

  9. 洛谷 P2480 [SDOI2010]古代猪文 题解【欧拉定理】【CRT】【Lucas定理】

    数论综合题. 题目背景 题目背景与题目无关因此省略.题目链接 题目描述 猪王国的文明源远流长,博大精深. iPig 在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为 \(N\).当然,一种语 ...

随机推荐

  1. MT【250】距离0-7

    是否存在一个正方体,它的8个顶点到某一个平面的距离恰好为$0,1,2,3,4,5,6,7$ ?若存在指出正方体与相应的平面的位置关系.不存在说明理由. 分析:设平面$\alpha$的单位法向量为$\o ...

  2. 【HDU - 4348】To the moon(主席树在线区间更新)

    BUPT2017 wintertraining(15) #8G 题意 给一个数组a,有n个数,m次操作.\(N, M ≤ 10^5, |A i| ≤ 10^9, 1 ≤ l ≤ r ≤ N, |d| ...

  3. vim 高级编辑技巧

    建议参考IBM官方文档https://www.ibm.com/developerworks/cn/linux/l-cn-tip-vim/ 重新输入以前输入过的某条命令Ctrl + r 全局替换格式:& ...

  4. Python数据采集分析告诉你为何上海二手房你都买不起

    感谢关注Python爱好者社区公众号,在这里,我们会每天向您推送Python相关的文章实战干货. 来吧,一起Python. 对商业智能BI.大数据分析挖掘.机器学习,python,R等数据领域感兴趣的 ...

  5. 【BZOJ4911】[SDOI2017]切树游戏(动态dp,FWT)

    [BZOJ4911][SDOI2017]切树游戏(动态dp,FWT) 题面 BZOJ 洛谷 LOJ 题解 首先考虑如何暴力\(dp\),设\(f[i][S]\)表示当前以\(i\)节点为根节点,联通子 ...

  6. 【BZOJ4331】[JSOI2012]越狱老虎桥(Tarjan)

    [BZOJ4331][JSOI2012]越狱老虎桥(Tarjan) 题面 BZOJ 然而BZOJ是权限题QwQ 洛谷 题解 先求出所有割边,那么显然要割掉一条割边. 如果要加入一条边,那么显然是把若干 ...

  7. [模板] 动态dp

    用途 对于某些树形dp(目前只会树上最大权独立集或者类似的),动态地修改点权,并询问修改后的dp值 做法(树剖版) 以最大权独立集为例 设$f[x][0/1]$表示x选不选,这棵子树的最大权独立集大小 ...

  8. JavaWeb基础之Servlet简单实现用户登陆

    学习javaweb遇到了一些坑,一些问题总结下来,记个笔记. 学习servlet遇到的一些坑: servlet实现用户登陆遇到的坑解决办法: https://www.cnblogs.com/swxj/ ...

  9. AITP

    AITP AITP比较简单,适合刚毕业,即将开始IT生涯的学生.接受CIPS认证课程的毕业生可以自动获得AITP证书,并获得一年的免费的CIPS会员资格. 接受非CIPS认证课程的毕业生需要申请,另外 ...

  10. CF670C cinema

    想必是个半水题,div2的C嘛 仔细观察,发现排序可做. 怎么排序呢?排啥呢?拿啥离散化,拿啥结构体呢? 仔细思考热静分析,便可得出结论: 以每个人会的语言离散化,把每个电影建结构体后不排序,而是枚举 ...