Codeforces997C Sky Full of Stars 【FMT】【组合数】
题目大意:
一个$n*n$的格子,每个格子由你填色,有三种允许填色的方法,问有一行或者一列相同的方案数。
题目分析:
标题的FMT是我吓人用的。
一行或一列的问题不好解决,转成它的反面,没有一行和一列相同的方案数。
从一个方向入手,比如列,把一列看成一个整体。把颜色看成二进制数,$001$,$010$,$100$。
那么一列构成了一个长度为$3n$的二进制数,$n$列之间互相与出来的结果为$0$。实际我要统计这个东西。
注意到每一列的取法是不能取相同颜色的,所以剔除相同。之后我们得到了每一列可选的情况。
将它做FMT,之后做$n$次方,然后做IFMT,$0$位上的就是答案。用$9^n$减去这个数字就行。
直接做的时间复杂度是$O(n*2^n)$的,我们远不能承受。
但是我们有用的状态却不多,甚至还有规律。比如FMT后的某个位$bit$如果每三位出现两个$1$那么这个的FMT值一定是$0$,然后如果每三位只有$1$个$1$那么该位贡献$1$次,否则贡献$3$次。
然后是IFMT的还原问题,经过观察,不难发现如果某个位$bit$的$1$的个数为奇数,那么对$0$位产生减的影响,否则产生加的影响。
综合上面两个因素,可以利用组合数来统计方案数。值得注意的是如果每三位的1的位置相同那么要提防填充出相同结果。
时间复杂度$O(n)$
代码:
#include<bits/stdc++.h>
using namespace std; const int maxn = ;
const int mod = ; int n; int f[maxn][],g[maxn][];
int pw3[maxn];
int c[maxn]; int fast_pow(int now,int pw){
int ans = ,dt = now,bit = ;
while(bit <= pw){
if(bit & pw) ans = (1ll*ans*dt)%mod;
bit <<=;dt = (1ll*dt*dt)%mod;
}
return ans;
} void work(){
if(n == ) {puts("");return;}
pw3[] = ;for(int i=;i<=n;i++) pw3[i] = 3ll*pw3[i-]%mod;
c[] = ;
for(int i=;i<=n;i++){
c[i]=(1ll*c[i-]*(n-i+))%mod;
c[i]=(1ll*c[i]*fast_pow(i,mod-))%mod;
}
int sum = fast_pow(pw3[n],n);
f[][] = ; g[][] = (pw3[n]-+mod)%mod;
f[n][] = (pw3[n]-+mod)%mod; g[n][] = ;
for(int i=;i<n;i++){
f[i][] = 3ll*c[i]%mod;
f[i][] = (1ll*pw3[i]*c[i])%mod;
f[i][] -= f[i][]; f[i][] += mod; f[i][] %= mod;
g[i][] = pw3[n-i]; g[i][] = (pw3[n-i]-+mod)%mod;
}
for(int i=;i<=n;i++){
g[i][] = fast_pow(g[i][],n); g[i][] = fast_pow(g[i][],n);
int dr = ((i&)?:-);
sum += dr*(1ll*g[i][]*f[i][])%mod;
if(sum >= mod) sum-=mod; if(sum < ) sum += mod;
sum += dr*(1ll*g[i][]*f[i][])%mod;
if(sum >= mod) sum-=mod; if(sum < ) sum += mod;
}
printf("%d",sum); } int main(){
scanf("%d",&n);
work();
return ;
}
Codeforces997C Sky Full of Stars 【FMT】【组合数】的更多相关文章
- codeforces997C Sky full of stars
传送门:http://codeforces.com/problemset/problem/997/C [题解] 注意在把$i=0$或$j=0$分开考虑的时候,3上面的指数应该是$n(n-j)+j$ 至 ...
- CF997C Sky Full of Stars
CF997C Sky Full of Stars 计数好题 在Ta的博客查看 容斥式子:发现只要每个钦定方案的贡献都考虑到再配上容斥系数就是对的 O(n^2)->O(n) 把麻烦的i=0,j=0 ...
- codeforces 997C.Sky Full of Stars
题目链接:codeforces 997C.Sky Full of Stars 一道很简单(?)的推式子题 直接求显然不现实,我们考虑容斥 记\(f(i,j)\)为该方阵中至少有\(i\)行和\(j\) ...
- Codeforces 997 C - Sky Full of Stars
C - Sky Full of Stars 思路: 容斥原理 题解:http://codeforces.com/blog/entry/60357 注意当i > 1 且 j > 1,是同一种 ...
- 【题解】CF997C Sky Full of Stars
[题解]CF997C Sky Full of Stars 为什么我的容斥原理入门题是这道题????????? \(Part-1\)正向考虑 直接考虑不合法合法的方案吧 所以我们设行有\(i\),列有\ ...
- [Codeforces 997C]Sky Full of Stars(排列组合+容斥原理)
[Codeforces 997C]Sky Full of Stars(排列组合+容斥原理) 题面 用3种颜色对\(n×n\)的格子染色,问至少有一行或一列只有一种颜色的方案数.\((n≤10^6)\) ...
- cf997C. Sky Full of Stars(组合数 容斥)
题意 题目链接 \(n \times n\)的网格,用三种颜色染色,问最后有一行/一列全都为同一种颜色的方案数 Sol Orz fjzzq 最后答案是这个 \[3^{n^2} - (3^n - 3)^ ...
- CF997C Sky Full of Stars 数论
正解:容斥 解题报告: 传送门! 两个方法,分别港下QAQ 先说第一种 首先要推出式子,就∑2*C(i,n)*(-1)i+1*3i*3n*n-n+3*∑∑(-1)i+j+1*C(i,n)*C(j,n) ...
- Codeforces.997C.Sky Full of Stars(容斥 计数)
题目链接 那场完整的Div2(Div1 ABC)在这儿.. \(Description\) 给定\(n(n\leq 10^6)\),用三种颜色染有\(n\times n\)个格子的矩形,求至少有一行或 ...
随机推荐
- 解决Android Studio 错误方法
https://blog.csdn.net/lang523493505/article/details/82914253 https://blog.csdn.net/qq_23599965/artic ...
- 通过this()调用有参构造方法
使用原因:在通过无参构造方法实例化对象时,如果有属性可以设置默认值,可通过在无参构造方法中使用this()调用有参构造方法实现. this()需要写在无参构造方法的第一行! 例子:在没有给出小猫的名字 ...
- 修改eclipce操作权限
<dependencies> <dependency> <groupId>jdk.tools</groupId> <artifactId>j ...
- LZO
LZO 是致力于解压速度的一种数据压缩算法,LZO 是 Lempel-Ziv-Oberhumer 的缩写.这个算法是无损算法,参考实现程序是线程安全的. 实现它的一个自由软件工具是lzop.最初的库是 ...
- IdentityServer4【QuickStart】之使用ResourceOwnerPassword流程来保护API
使用ResourceOwnerPassword流程来保护API OAuth2.0中的ResourceOwnerPassword授权流程允许一个客户端发送username和password到token服 ...
- Chrome 浏览器的简单设置 无痕模式 暗黑模式 自定义用户目录
1. Chrome73 新增加了暗黑模式 可以通过修改快捷方式的方式来默认开启方法如下 1.1 关闭浏览器 2.2 鼠标焦点定位到任务栏 Chrome 图标处, 并且按住shift 按键 执行右键操作 ...
- 同一个机器 安装多个版本Chrome浏览器的方法
1. Chrome 现在安装直接没有任何提示 就直接安装了 而且自动式 高版本覆盖低版本安装 不给你任何选择版本的机会. 2. 但是chrome 的安装是基于用户的 所以 同一个机器 使用不同的用户 ...
- AngularJS基于MVC的复杂操作案例
AngularJS基于MVC的复杂操作案例 <!DOCTYPE html> <html> <head> <meta charset="UTF-8&q ...
- from组件补充
一.定义的规则 class TeacherForm(Form): #必须继承Form # 创建字段,本质上是正则表达式 username = fields.CharField( required=Tr ...
- 18个Python高效编程技巧,Mark!
初识Python语言,觉得python满足了我上学时候对编程语言的所有要求.python语言的高效编程技巧让我们这些大学曾经苦逼学了四年c或者c++的人,兴奋的不行不行的,终于解脱了.高级语言,如果做 ...