【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP
题目描述
有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色。
还有\(m\)种洗牌方法,每种洗牌方法是一种置换。保证任意多次洗牌都可用这\(m\)种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。
问你本质不同的染色方法有多少种。
\(r,g,b\leq 20,m\leq 60\)
题解
对照置换群的定义,可以发现这\(m\)种置换加上恒等置换一共\(m+1\)中置换构成了一个置换群。
由burnside引理得到本质不同的方案数就是只考虑每个置换时的染色方案数的平均数。
对于每个置换,先处理出循环,一个循环里的卡牌要染上相同的颜色。因为每种颜色的卡牌有数量限制,所以要背包DP一下。
最后乘上\({(m+1)}^{-1}\)。
时间复杂度:\(O(n^3m)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return s;
}
int upmin(int &a,int b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(int &a,int b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
int p;
int fp(int a,int b)
{
int s=1;
for(;b;b>>=1,a=a*a%p)
if(b&1)
s=s*a%p;
return s;
}
int f[100][100][100];
int a[100];
int r,g,b;
int n;
int c[100];
void add(int &a,int b)
{
a=(a+b)%p;
}
void dp(int v)
{
int i,j,k;
for(i=r;i>=0;i--)
for(j=g;j>=0;j--)
for(k=b;k>=0;k--)
{
if(i>=v)
add(f[i][j][k],f[i-v][j][k]);
if(j>=v)
add(f[i][j][k],f[i][j-v][k]);
if(k>=v)
add(f[i][j][k],f[i][j][k-v]);
}
}
int solve()
{
memset(f,0,sizeof f);
f[0][0][0]=1;
int i;
memset(c,0,sizeof c);
for(i=1;i<=n;i++)
{
int s=0;
int j=i;
while(!c[j])
{
c[j]=1;
s++;
j=a[j];
}
dp(s);
}
return f[r][g][b];
}
int main()
{
int m;
scanf("%d%d%d%d%d",&r,&g,&b,&m,&p);
int i,j;
n=r+g+b;
int ans=0;
for(i=1;i<=m;i++)
{
for(j=1;j<=n;j++)
scanf("%d",&a[j]);
add(ans,solve());
}
m++;
for(i=1;i<=n;i++)
a[i]=i;
add(ans,solve());
ans=ans*fp(m,p-2)%p;
printf("%d\n",ans);
return 0;
}
【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP的更多相关文章
- 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp
题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...
- BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4255 Solved: 2582[Submit][Status][Discuss] Descript ...
- BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...
- [BZOJ1004][HNOI2008]Cards 群论+置换群+DP
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 首先贴几个群论相关定义和引理. 群:G是一个集合,*是定义在这个集合上的一个运算. ...
- bzoj1004 [HNOI2008]Cards Burnside 引理+背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1004 题解 直接 Burnside 引理就可以了. 要计算不动点的个数,那么对于一个长度为 \ ...
- 【BZOJ 1004】 1004: [HNOI2008]Cards (置换、burnside引理)
1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很 ...
- [BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...
- BZOJ1004 HNOI2008 Cards Burnside、背包
传送门 在没做这道题之前天真的我以为\(Polya\)可以完全替代\(Burnside\) 考虑\(Burnside\)引理,它要求的是对于置换群中的每一种置换的不动点的数量. 既然是不动点,那么对于 ...
- bzoj1004: [HNOI2008]Cards(burnside引理+DP)
题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...
随机推荐
- nginx Location 语法基础知识
URL地址匹配是Nginx配置中最灵活的部分 Location 支持正则表达式匹配,也支持条件匹配,用户可以通过location指令实现Nginx对动丶静态网页的过滤处理. Nginx locatio ...
- POJ - 3244-Difference between Triplets
其实我最开始没有这道题...是做到UPC-11079-小P的决斗,训练结束后然后搜索了一波,才了解这个题的. 非常牛逼的题...这么多人做出来了...我好菜... 对于每对三元组Ta=(La,Ja,K ...
- threading模块,python下的多线程
一.GIL全局解释器锁 In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple nativ ...
- css引入的两种方法link和@import的区别和用法
link和@import都是HTML中引入CSS的语法单词. 两者的基本语法 link语法结构 <link href="外部CSS文件的URL路径" rel="st ...
- [转帖]oracle改版sql server问题点汇总
https://www.cnblogs.com/zhangdk/p/oracle_sqlserver.html 只记得 最开始的时候看过 没有具体的了解里面的特点 原作者总结的很好 留下来 以后说不定 ...
- umount -fl用法
umount, 老是提示:device is busy, 服务又不能停止的.可以用"umount -fl"解决! 挂载: mount - mount a filesystem mo ...
- app自动化测试Appium+python
一.node.js安装 https://nodejs.org/en/download/ ##一直下一步 ###cmd查看 二. .NET Framework安装 https://www.micros ...
- mvn clean compile package install deploy
(1) package 目的是打包,在pom中,如果是jar就会打包成jar,如果是war就会打包成war 在pom.xml中: <modelVersion></modelVersi ...
- 微信小程序wxml無法實現頁面跳轉的問題
wxml的 navigator的url設置后無法跳轉? 檢查要跳轉的頁面是否是在APP.json的tabBar里註冊過,如果是tabBar頁面是不能用wx.navigateTo和wx.Redirect ...
- 使用layui 做后台管理界面,在Tab中的链接点击后添加一个新TAB的解决方法
给链接或按钮 添加 onclick="self.parent.addTab('百度','http://www.baidu.com','icon-add')" 如: <a h ...