题目描述

  有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色。

  还有\(m\)种洗牌方法,每种洗牌方法是一种置换。保证任意多次洗牌都可用这\(m\)种洗牌法中的一种代

替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

  问你本质不同的染色方法有多少种。

  \(r,g,b\leq 20,m\leq 60\)

题解

  对照置换群的定义,可以发现这\(m\)种置换加上恒等置换一共\(m+1\)中置换构成了一个置换群。

  由burnside引理得到本质不同的方案数就是只考虑每个置换时的染色方案数的平均数。

  对于每个置换,先处理出循环,一个循环里的卡牌要染上相同的颜色。因为每种颜色的卡牌有数量限制,所以要背包DP一下。

  最后乘上\({(m+1)}^{-1}\)。

  时间复杂度:\(O(n^3m)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return s;
}
int upmin(int &a,int b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(int &a,int b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
int p;
int fp(int a,int b)
{
int s=1;
for(;b;b>>=1,a=a*a%p)
if(b&1)
s=s*a%p;
return s;
}
int f[100][100][100];
int a[100];
int r,g,b;
int n;
int c[100];
void add(int &a,int b)
{
a=(a+b)%p;
}
void dp(int v)
{
int i,j,k;
for(i=r;i>=0;i--)
for(j=g;j>=0;j--)
for(k=b;k>=0;k--)
{
if(i>=v)
add(f[i][j][k],f[i-v][j][k]);
if(j>=v)
add(f[i][j][k],f[i][j-v][k]);
if(k>=v)
add(f[i][j][k],f[i][j][k-v]);
}
}
int solve()
{
memset(f,0,sizeof f);
f[0][0][0]=1;
int i;
memset(c,0,sizeof c);
for(i=1;i<=n;i++)
{
int s=0;
int j=i;
while(!c[j])
{
c[j]=1;
s++;
j=a[j];
}
dp(s);
}
return f[r][g][b];
}
int main()
{
int m;
scanf("%d%d%d%d%d",&r,&g,&b,&m,&p);
int i,j;
n=r+g+b;
int ans=0;
for(i=1;i<=m;i++)
{
for(j=1;j<=n;j++)
scanf("%d",&a[j]);
add(ans,solve());
}
m++;
for(i=1;i<=n;i++)
a[i]=i;
add(ans,solve());
ans=ans*fp(m,p-2)%p;
printf("%d\n",ans);
return 0;
}

【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP的更多相关文章

  1. 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp

    题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...

  2. BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4255  Solved: 2582[Submit][Status][Discuss] Descript ...

  3. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  4. [BZOJ1004][HNOI2008]Cards 群论+置换群+DP

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 首先贴几个群论相关定义和引理. 群:G是一个集合,*是定义在这个集合上的一个运算. ...

  5. bzoj1004 [HNOI2008]Cards Burnside 引理+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1004 题解 直接 Burnside 引理就可以了. 要计算不动点的个数,那么对于一个长度为 \ ...

  6. 【BZOJ 1004】 1004: [HNOI2008]Cards (置换、burnside引理)

    1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很 ...

  7. [BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  8. BZOJ1004 HNOI2008 Cards Burnside、背包

    传送门 在没做这道题之前天真的我以为\(Polya\)可以完全替代\(Burnside\) 考虑\(Burnside\)引理,它要求的是对于置换群中的每一种置换的不动点的数量. 既然是不动点,那么对于 ...

  9. bzoj1004: [HNOI2008]Cards(burnside引理+DP)

    题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...

随机推荐

  1. JS 原型与原型链

    图解: 一.普通对象 跟 函数对象 JavaScript 中,一切皆对象.但对象也有区别,分为 普通对象 跟 函数对象,Object 和 Function 是 JavaScript 自带的函数对象. ...

  2. c++入门之类继承初步

    继承是面向对象的一种很重要的特性,先来复习基类的基本知识: 先上一段代码: # ifndef TABLE00_H # define TABLE00_H # include "string&q ...

  3. vscode中php断点调试方法!

    一.PHP的代码断点调试 1.打开vscode的首选项设置,添加"php.validate.executablePath": "D:\\newXampp\\php\\ph ...

  4. python 中的super()继承,搜索广度为先

    一.python中类的继承 1.1 单继承 在python 中我们可以这样来定义一个类:及继承它的子类 class Father: def __init__(self, mes): #1 父类的ini ...

  5. MySQL导出数据,并转存到Excel表格中

    从数据库中导出数据的方法,这里就不提了,网上有很多方法,如果闲麻烦,可以看一下这个:mysql导出数据 其实使用最简单的下面这个语句: mysql > select * from demo in ...

  6. hadoop实例-网站用户行为分析

    一.数据集 网站用户购物行为数据集2030万条,包括raw_user.csv(2000万条)和small_user.csv(30万条,适合新手) 字段说明: user_id 用户编号,item_id ...

  7. Centos 6.x 升级到 7.x

    Centos6.5跨越大版本升级到Centos7.4 - Linux学习与应用 - CSDN博客https://blog.csdn.net/whbttst/article/details/805348 ...

  8. chrome extensions notifications

    developer.chrome.comhttps://developer.chrome.com/extensions/notifications notification | MDNhttps:// ...

  9. Azure系列2.1.10 —— CloudBlobClient

    (小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...

  10. Git SSH公钥配置

    https://www.cnblogs.com/smuxiaolei/p/7484678.html https://blog.csdn.net/weixin_42063071/article/deta ...