HDU4651 Partition 【多项式求逆】
题目分析:
这题的做法是一个叫做五边形数定理的东西,我不会。
我们不难发现第$n$项的答案其实是:
$$\prod_{i=1}^{\infty}\frac{1}{1-x^i}$$
我们要对底下的东西求逆,可以尝试打表找一下这个的规律,就会发现底下那个函数,系数要么是$1$,要么是$-1$,要么是$0$。
而且这个函数是稀疏的,前$100000$项只有$515$项非$0$。可以打出表后暴力求逆。
所以这道题我们有了一个$O(515*n)$的做法。
代码:
#include<bits/stdc++.h>
using namespace std; const int maxn = ;
const int mod = ; int num = ;
int a[] ={,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,};
int b[] = {,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}; int n,iv[maxn],res[maxn]; void work(){
iv[] = ;for(int i=;i<num;i++) res[a[i]]=,res[b[i]] = mod-;
for(int i=;i<=n;i++){
if(res[i] != ){
iv[i] = mod-res[i];
for(int j=;j<num;j++){
if(a[j] + i > n) break;
res[a[j]+i] += iv[i];
if(res[a[j]+i] >= mod) res[a[j]+i]-=mod;
}
for(int j=;j<num;j++){
if(b[j] + i > n) break;
res[b[j]+i] -= iv[i];
if(res[b[j]+i] < ) res[b[j]+i] += mod;
}
}
}
} int main(){
n = ;
work();
int T; scanf("%d",&T);
while(T--){
scanf("%d",&n);
printf("%d\n",iv[n]);
}
return ;
}
HDU4651 Partition 【多项式求逆】的更多相关文章
- hdu 5730 Shell Necklace [分治fft | 多项式求逆]
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- NTT+多项式求逆+多项式开方(BZOJ3625)
定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...
- Re.多项式求逆
前言 emmm暂无 多项式求逆目的 顾名思义 就是求出一个多项式的摸xn时的逆 给定一个多项式F(x),请求出一个多项式G(x),满足F(x)∗G(x)≡1(modxn),系数对998244353取模 ...
- BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)
题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...
- 洛谷P4841 城市规划(生成函数 多项式求逆)
题意 链接 Sol Orz yyb 一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到... 正解是先设\(g(n)\)表示\(n\)个 ...
- LOJ2527 HAOI2018 染色 容斥、生成函数、多项式求逆
传送门 调了1h竟然是因为1004535809写成了998244353 "恰好有\(K\)种颜色出现了\(S\)次"的限制似乎并不容易达到,考虑容斥计算. 令\(c_j\)表示强制 ...
- 【BZOJ3625】【CF438E】小朋友和二叉树 NTT 生成函数 多项式开根 多项式求逆
题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\ ...
- 【XSY2612】Comb Avoiding Trees 生成函数 多项式求逆 矩阵快速幂
题目大意 本题的满二叉树定义为:不存在只有一个儿子的节点的二叉树. 定义一棵满二叉树\(A\)包含满二叉树\(B\)当且经当\(A\)可以通过下列三种操作变成\(B\): 把一个节点的两个儿子同时删掉 ...
- 【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\f ...
随机推荐
- Entity Framework Core系列之什么是Entity Framework Core
前言 Entity Framework Core (EF Core)是微软推荐的基于.NET Core framework的应用程序数据访问技术.它是轻量级,可扩展并且支持跨平台开发.EF Core是 ...
- 十三、MUI的日期起始和结束日期设置
MUI的日期选择器的使用 // 日期选择器 //生日选择器(不会超过今年) function fdPicker1(id) { var year=new Date().getFullYear(); va ...
- 软件工程(FZU2015) 赛季得分榜,第10回合(alpha冲刺)
SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分: 团队项目分=团队得分+个人贡献分 个人贡献分: 个人 ...
- echarts使用笔记三:柱子对比
app.title = '坐标轴刻度与标签对齐'; option = { title : { //标题 x : 'center', y : 5, text : '对比图' //换行用 \n }, le ...
- mysql cpu 100% 满 优化方案
解决MySQL CPU占用100%的经验总结 - karl_han的专栏 - CSDN博客 https://blog.csdn.net/karl_han/article/details/5630782 ...
- MYSQL mydumper & myloader
第三方逻辑备份工具myduper和myloader | xiaoyu的数据库小窝-技术交流http://www.dbaxiaoyu.com/archives/1643 myloader原理0 - ze ...
- apache benchmark 的简单安装与测试
1. 下载apache benchmark Copy From https://blog.csdn.net/fyqaccpt96/article/details/43272001 yum instal ...
- taro 与uni-app对比
https://www.jianshu.com/p/03e08399587e (copy)
- 阿里巴巴 Java开发手册1.4.0
<阿里巴巴Java开发手册1.4.0>下载地址: 下载地址:https://102.alibaba.com/downloadFile.do?file=1528269849853/Java_ ...
- 原生JS实现增加删除class
<!DOCTYPE html> <html> <head> <style type="text/css"> .night-mode{ ...