题目分析:

这题的做法是一个叫做五边形数定理的东西,我不会。

我们不难发现第$n$项的答案其实是:

$$\prod_{i=1}^{\infty}\frac{1}{1-x^i}$$

我们要对底下的东西求逆,可以尝试打表找一下这个的规律,就会发现底下那个函数,系数要么是$1$,要么是$-1$,要么是$0$。

而且这个函数是稀疏的,前$100000$项只有$515$项非$0$。可以打出表后暴力求逆。

所以这道题我们有了一个$O(515*n)$的做法。

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ;
const int mod = ; int num = ;
int a[] ={,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,};
int b[] = {,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}; int n,iv[maxn],res[maxn]; void work(){
iv[] = ;for(int i=;i<num;i++) res[a[i]]=,res[b[i]] = mod-;
for(int i=;i<=n;i++){
if(res[i] != ){
iv[i] = mod-res[i];
for(int j=;j<num;j++){
if(a[j] + i > n) break;
res[a[j]+i] += iv[i];
if(res[a[j]+i] >= mod) res[a[j]+i]-=mod;
}
for(int j=;j<num;j++){
if(b[j] + i > n) break;
res[b[j]+i] -= iv[i];
if(res[b[j]+i] < ) res[b[j]+i] += mod;
}
}
}
} int main(){
n = ;
work();
int T; scanf("%d",&T);
while(T--){
scanf("%d",&n);
printf("%d\n",iv[n]);
}
return ;
}

HDU4651 Partition 【多项式求逆】的更多相关文章

  1. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

  2. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  3. NTT+多项式求逆+多项式开方(BZOJ3625)

    定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...

  4. Re.多项式求逆

    前言 emmm暂无 多项式求逆目的 顾名思义 就是求出一个多项式的摸xn时的逆 给定一个多项式F(x),请求出一个多项式G(x),满足F(x)∗G(x)≡1(modxn),系数对998244353取模 ...

  5. BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)

    题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...

  6. 洛谷P4841 城市规划(生成函数 多项式求逆)

    题意 链接 Sol Orz yyb 一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到... 正解是先设\(g(n)\)表示\(n\)个 ...

  7. LOJ2527 HAOI2018 染色 容斥、生成函数、多项式求逆

    传送门 调了1h竟然是因为1004535809写成了998244353 "恰好有\(K\)种颜色出现了\(S\)次"的限制似乎并不容易达到,考虑容斥计算. 令\(c_j\)表示强制 ...

  8. 【BZOJ3625】【CF438E】小朋友和二叉树 NTT 生成函数 多项式开根 多项式求逆

    题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\ ...

  9. 【XSY2612】Comb Avoiding Trees 生成函数 多项式求逆 矩阵快速幂

    题目大意 本题的满二叉树定义为:不存在只有一个儿子的节点的二叉树. 定义一棵满二叉树\(A\)包含满二叉树\(B\)当且经当\(A\)可以通过下列三种操作变成\(B\): 把一个节点的两个儿子同时删掉 ...

  10. 【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln

    题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\f ...

随机推荐

  1. .Net Core 在 Linux-Centos上的部署实战教程(一)

    pa我是在VS2017上写好项目然后来部署的,我的宗旨能截图就少BB 服务器系统: Asp.Net Core版本: 1.往服务器安装.net core 2.1 https://www.microsof ...

  2. Java 小记 - 时间的处理与探究

    前言 时间的处理与日期的格式转换几乎是所有应用的基础职能之一,几乎所有的语言都会为其提供基础类库.作为曾经 .NET 的重度使用者,赖其优雅的语法,特别是可扩展方法这个神级特性的存在,我几乎没有特意关 ...

  3. tensorflow-gpu安装的一些注意

    按正确的顺序安装,严格安装特定的版本 1,下载和安装严格版本的cuda和cuDnn,其他版本的不干活.比如要求9.0你就不能装9.1.https://www.tensorflow.org/instal ...

  4. portscaner 多线程、多协程并发端口扫描

    import socket,time,re,sys,os,threading import gevent from gevent import monkey monkey.patch_all() so ...

  5. Python-Requests库详解

    查看一下是否安装requests库 什么是Requests Requests是用python语言基于urllib编写的,采用的是Apache2 Licensed开源协议的HTTP库如果你看过上篇文章关 ...

  6. koa generator

    Koa (koajs) -- 基于 Node.js 平台的下一代 web 开发框架 | Koajs... Koa 框架教程 koa入门 如何评价 Node.js 的koa框架?

  7. Bus Video System CodeForces - 978E (思维)

    The busses in Berland are equipped with a video surveillance system. The system records information ...

  8. 优化MySQL性能的几种方法-总结

    原文:http://bbs.landingbj.com/t-0-245601-1.html 1.要选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越 小,在它上 ...

  9. Day 4-7 -configparser模块

    此模块用于生成和修改常见配置文档,当前模块的名称在 python 3.x 版本中变更为 configparser. 常用方法: import configparser conf = configpar ...

  10. npm install、npm install --save与npm install --save-dev区别

    npm install X: 会把X包安装到node_modules目录中 不会修改package.json 之后运行npm install命令时,不会自动安装X npm install X –sav ...