BZOJ 2002 弹飞绵羊
LCT
刚学LCT,对LCT的性质不太熟练,还需要多多练习。。
对每一个点,将其与它能够到达的点连一条虚边。弹出去的话就用n+1这个节点表示。
第一种操作我们需要从LCT的性质入手,问的问题其实就是x通过多少条边可以到达n+1这个点。。那么我们可以把他们两拉成一条链(也就是split(n + 1, x)),这样就把x splay到根了,根据LCT的性质,在x和n+1联通的这棵splay中,x一定没有右子树,因为他是深度最大的点。那么左子树所有点就是原树中x到n+1的路径上的所有点了。。直接输出答案size就好了
第二种操作很简单断边再连边就行了,因为这题的边一定合法,所以没什么需要考虑的特殊情况
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 200005;
int n, tot, ch[N][2], size[N], fa[N], st[N], rev[N], f[N];
int newNode(){
size[++tot] = 1, fa[tot] = ch[tot][0] = ch[tot][1] = 0;
return tot;
}
bool isRoot(int x){
return ch[fa[x]][0] != x && ch[fa[x]][1] != x;
}
void reverse(int x){
rev[x] ^= 1;
swap(ch[x][0], ch[x][1]);
}
void push_up(int x){
size[x] = size[ch[x][0]] + size[ch[x][1]] + 1;
}
void push_down(int x){
if(rev[x]){
reverse(ch[x][0]), reverse(ch[x][1]);
rev[x] ^= 1;
}
}
void rotate(int x){
int y = fa[x], z = fa[y], p = (ch[y][1] == x) ^ 1;
ch[y][p^1] = ch[x][p], fa[ch[x][p]] = y;
if(!isRoot(y)) ch[z][ch[z][1] == y] = x;
fa[x] = z, fa[y] = x, ch[x][p] = y;
push_up(y), push_up(x);
}
void splay(int x){
int pos = 0; st[++pos] = x;
for(int i = x; !isRoot(i); i = fa[i]) st[++pos] = fa[i];
while(pos) push_down(st[pos--]);
while(!isRoot(x)){
int y = fa[x], z = fa[y];
if(!isRoot(y)){
if((ch[y][0] == x) ^ (ch[z][0] == y)) rotate(x);
rotate(y);
}
rotate(x);
}
push_up(x);
}
void access(int x){
for(int p = 0; x; p = x, x = fa[x]){
splay(x), ch[x][1] = p, push_up(x);
}
}
void makeRoot(int x){
access(x), splay(x), reverse(x);
}
void link(int x, int y){
makeRoot(x), fa[x] = y, push_up(y);
}
void split(int x, int y){
makeRoot(x), access(y), splay(y);
}
void cut(int x, int y){
split(x, y);
fa[x] = ch[y][0] = 0, push_up(y);
}
int main(){
n = read();
for(int i = 1; i <= n + 1; i ++) newNode();
for(int i = 1; i <= n; i ++){
int k = read(), t = min(i + k, n + 1);
link(i, t), f[i] = t;
}
int m = read();
while(m --){
int opt = read();
if(opt == 1){
int x = read(); x ++;
split(n + 1, x); printf("%d\n", size[x] - 1);
}
else{
int x = read(), y = read(); x ++;
cut(x, f[x]);
int t = min(x + y, n + 1);
link(x, t), f[x] = t;
}
}
return 0;
}
BZOJ 2002 弹飞绵羊的更多相关文章
- BZOJ 2002 弹飞绵羊(分块)
题目:弹飞绵羊 这道题,据说是lct裸题,但是lct那么高级的数据结构,我并不会,所以采取了学长讲过的分块做法,我们对序列分块,可以定义两个数组,其中一个表示从当前位置跳出当前块需要多少步,另一个数组 ...
- [bzoj] 2002 弹飞绵羊 || LCT
原题 简单的LCT练习题. 我们发现对于一个位置x,他只能跳到位置x+k,也就是唯一的父亲去.加入我们将弹飞的绵羊定义为跳到了n+1,那么这就形成了一棵树.而因为要修改k,所以这颗树是动态连边的,那么 ...
- bzoj 2002: 弹飞绵羊 Link-Cut-Tree
题目: Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...
- bzoj 2002 弹飞绵羊 分块
正解lct,然而本蒟蒻并不会.... 分块思路很清晰,处理出每个点弹出所在块所需要的步数及出去后的第一个位置 #include<cstdio> #include<cstring> ...
- bzoj 2002 弹飞绵羊 lct裸题
上一次用分块过了, 今天换了一种lct(link-cut tree)的写法. 学lct之前要先学过splay. lct 简单的来说就是 一颗树, 然后每次起作用的都是其中的某一条链. 所以每次如果需要 ...
- bzoj 2002 Bounce 弹飞绵羊
bzoj 2002 Bounce 弹飞绵羊 设一个虚拟节点表示被弹飞,则每个点的后继点是唯一确定的,每个点向它的后继点连边,就形成了一颗树. 询问就是问某个节点到虚拟节点的路径长度,修改就删除原来向后 ...
- [BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree)
[BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree) 题面 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一 ...
- BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊
2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 9071 Solved: 4652[Submi ...
- BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 分块
2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOn ...
随机推荐
- 二次剩余 Cipolla算法
欧拉准则 \(a\)是\(p\)的二次剩余等价于\(a^{\frac{p-1}{2}}\equiv 1\pmod p\),\(a\)不是\(p\)的二次剩余等价于\(a^{\frac{p-1}{2}} ...
- 2017软工实践K班总结
回首一学期的软工实践,从暑假开始陆续布置作业,经历个人.结对与团队等大小作业.也经历了不少同学被吓跑.第一周就退选的情况,能坚持下来的都是胜利者,至少你们有一颗愿意挑战的心.首先感谢助教谢涛付出的巨大 ...
- Survey项目总结
1.Ioc深入理解 Inverse of control org.springframework.scheduling.quartz.SchedulerFactoryBean org.mybatis. ...
- ps昏暗室内照片调成暖色光亮效果
最终效果 一.打开素材图片,把背景图层复制一层,做HDR滤镜操作,如果你没有这款滤镜,可以去网上下载,参数及效果如下图. 二.复制一层,用Noise滤镜做降噪处理,参数及效果如下图. 三.新建一个图层 ...
- java中流的简单小结
1.分类 按字节流分: InputStream(输出流) OutputStream(输入流) 按字符流分: Reader Writer 提示:输入.输出是站在程序的角度而言,所有输入流是“读 ...
- Linux系统mysql使用(一)
一.安装 sudo apt-get update #更新软件源 sudo apt-get install mysql-server #安装mysql 二.启动和关闭 service mysql sta ...
- linux下编译upx ucl
昨天,UPX发布了3.93版本. UPX(the Ultimate Packer for eXecutables)是一个非常全面的可执行文件压缩软件,支持dos/exe.dos/com.dos/sys ...
- 关于Fatal error: Paletter image not supported by webp 报错
报错提示 Fatal error: Paletter image not supported by webp 原因是由于图片被非法编辑过(相对PHP来说)造成, 有可能是某些编辑图片的软件的格式与PH ...
- Java 异常处理的误区和经验总结
Java 异常处理的误区和经验总结 1 本文着重介绍了 Java 异常选择和使用中的一些误区,希望各位读者能够熟练掌握异常处理的一些注意点和原则,注意总结和归纳.只有处理好了异常,才能提升开发人员 ...
- ssm项目跨域访问
最近使用ssm开发了一个项目,为了项目的开发速度,采用的是前后端同时开发,所以前端文件没有集成在项目中,最后在调试时涉及到了跨域.跨域的解决方法很多,我采用的是最简单的一种,代码如下: 新建一个过滤器 ...