import numpy as np
import matplotlib.pyplot as plt from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
from sklearn import datasets, linear_model
from sklearn.model_selection import train_test_split def load_data():
diabetes = datasets.load_diabetes()
return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) #ElasticNet回归
def test_ElasticNet(*data):
X_train,X_test,y_train,y_test=data
regr = linear_model.ElasticNet()
regr.fit(X_train, y_train)
print('Coefficients:%s, intercept %.2f'%(regr.coef_,regr.intercept_))
print("Residual sum of squares: %.2f"% np.mean((regr.predict(X_test) - y_test) ** 2))
print('Score: %.2f' % regr.score(X_test, y_test)) # 产生用于回归问题的数据集
X_train,X_test,y_train,y_test=load_data()
# 调用 test_ElasticNet
test_ElasticNet(X_train,X_test,y_train,y_test) def test_ElasticNet_alpha_rho(*data):
X_train,X_test,y_train,y_test=data
alphas=np.logspace(-2,2)
rhos=np.linspace(0.01,1)
scores=[]
for alpha in alphas:
for rho in rhos:
regr = linear_model.ElasticNet(alpha=alpha,l1_ratio=rho)
regr.fit(X_train, y_train)
scores.append(regr.score(X_test, y_test))
## 绘图
alphas, rhos = np.meshgrid(alphas, rhos)
scores=np.array(scores).reshape(alphas.shape)
fig=plt.figure()
ax=Axes3D(fig)
surf = ax.plot_surface(alphas, rhos, scores, rstride=1, cstride=1, cmap=cm.jet,linewidth=0, antialiased=False)
fig.colorbar(surf, shrink=0.5, aspect=5)
ax.set_xlabel(r"$\alpha$")
ax.set_ylabel(r"$\rho$")
ax.set_zlabel("score")
ax.set_title("ElasticNet")
plt.show() # 调用 test_ElasticNet_alpha_rho
test_ElasticNet_alpha_rho(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——ElasticNet回归的更多相关文章

  1. 吴裕雄 python 机器学习——逻辑回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  2. 吴裕雄 python 机器学习——Lasso回归

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...

  3. 吴裕雄 python 机器学习——岭回归

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...

  4. 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...

  5. 吴裕雄 python 机器学习——回归决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  6. 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  7. 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  8. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  9. 吴裕雄 python 机器学习——模型选择回归问题性能度量

    from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...

随机推荐

  1. 星图智控推嵌入式家用AI摄像头

    1.星图智控推嵌入式家用AI摄像头 这款新产品核心卖点是使用intel movidius vpu,同时运行了5种AI神经网络,支持自定义AI拓展功能,全本地存储,以及本地AI处理. 与市面上同类产品相 ...

  2. Eureka入门案例

    1.整体思路 1.1.服务注册中心Eureka(可以是一个集群,对外暴露自己的地址) 1.2.服务提供者:启动后向Eureka注册自己的信息(地址,提供什么服务) 1.3.客户端消费者:向Eureka ...

  3. Quartz公共类,log4net 日志分目录 ,调度任务。

    版本:Quartz 2.5 ,log4net 2.0.8 QuartzHelper namespace Job.Common { public class QuartzHelper { private ...

  4. IMU(LPMS-B2) ROS下使用教程

    一.基本信息 http://www.alubi.cn/lpms-b2/ 安装ros教程 http://wiki.ros.org/lpms_imu https://lp-research.com/ros ...

  5. Android Studio中绘制simpleUML类图详细说明及使用

    一.Android Studio中安装simpleUML 1.下载simpleUML jar包 地址为:http://plugins.jetbrains.com/  搜索 simpleUMLCE 2. ...

  6. js和php刷新页面的方法

    js中3个最优的刷新页面的方法 window.location.reload(): window.history.go(0): document.execCommand(''Refresh''): p ...

  7. ASP.NET Core 1.1版本之Hello word

    1.下载ASP.NET Core 1.1版本,并且安装. 2.新建一个工作文件夹,本文以WebApiFrame名称为例建立一个新的文件夹: mk WebApiFrame 3.启动命令行,在命令行中进入 ...

  8. SAS-决策树模型

    决策树是日常建模中使用最普遍的模型之一,在SAS中,除了可以通过EM模块建立决策树模型外,还可以通过SAS代码实现.决策树模型在SAS系统中对应的过程为Proc split或Proc hpsplit, ...

  9. 用户层APC队列使用

    一 参考 https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-que ...

  10. Java垃圾回收(整理)

    Java垃圾回收 Garbage Collection:GC: 什么样的对象才是垃圾?怎样判断一个对象引用是不是垃圾? 垃圾回收算法:Mark-Sweep(标记-清除)算法,Copying(复制)算法 ...