Derive representation formula from Green’s identity
This article introduces how to derive the representation formula used in BEM from Green's identity.
Interior and exterior representation formulas
Let $u$ be a harmonic function in the free space $\mathbb{R}^d$: \begin{equation} \label{eq:harmonic-function} \triangle u = 0 \quad (x \in \mathbb{R}^d). \end{equation} Let $\gamma(x, y)$ be the fundamental solution for the free space such that \begin{equation} \label{eq:laplace-equation} -\triangle_x \gamma(x, y) = \delta(x - y) \quad (x, y \in \mathbb{R}^d). \end{equation} It has the following formulation: \begin{equation} \label{eq:fundamental-solution} \gamma(x, y) = \begin{cases} -\frac{1}{2\pi}\ln\lvert x - y \rvert & (d = 2) \\ \frac{\lvert x - y \rvert^{2-d}}{(d-2)\omega_d} & (d > 2) \end{cases}, \end{equation} where $\omega_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}$, $x$ is the field point and $y$ is the source point. Let $\psi$ and $\varphi$ be two functions having 2nd order derivatives in a bounded domain $\Omega$ in $\mathbb{R}^d$ with its boundary $\Gamma = \pdiff\Omega$. Let $\vect{F} = \psi\nabla\varphi - \varphi\nabla\psi$ and apply the Gauss divergence theorem, we have the famous Green's 2nd identity as below: \begin{equation} \label{eq:green-2nd-identity} \int_{\Omega} \left( \psi\triangle\varphi - \varphi\triangle\psi \right) \intd V = \int_{\Gamma} \left( \psi \frac{\pdiff\varphi}{\pdiff \normvect} - \varphi \frac{\pdiff \psi}{\pdiff \normvect} \right) \intd S, \end{equation} where $\normvect$ is the unit outward normal vector with respect to domain $\Omega$, which points from interior to exterior. By replacing $\psi$ with $\gamma(x,y)$ and $\varphi$ with $u(x)$, and performing integration and differentiation with respect to the variable $x$, we have \begin{equation} \label{eq:green-2nd-identity-with-fundamental-solution} \int_{\Omega} \left( \gamma(x,y)\triangle_x u(x) - u(x)\triangle_x\gamma(x,y) \right) \intd V(x) = \int_{\Gamma} \left( \gamma(x,y) \frac{\pdiff u(x)}{\pdiff \normvect(x)} - u(x) \frac{\pdiff \gamma(x,y)}{\pdiff \normvect(x)} \right) \intd S(x). \end{equation} After substituting \eqref{eq:harmonic-function} and \eqref{eq:laplace-equation}, we have $$ u(y) = \int_{\Gamma} \gamma(x,y) \frac{\pdiff u(x)}{\pdiff \normvect(x)} \intd S(x) - \int_{\Gamma} u(x) \frac{\pdiff \gamma(x,y)}{\pdiff \normvect(x)} \intd S(x) \quad (y \in \Int(\Omega)). $$ where $\Int(\Omega)$ is the interior of $\Omega$. Due to the symmetric property of the fundamental solution \begin{align} \label{eq:fundamental-solution-symmetry} \gamma(x,y) &= \gamma(y,x) \\ \frac{\pdiff\gamma(y,x)}{\pdiff \normvect(y)} = K^{*}(y,x) &= K(x,y) = \frac{\pdiff\gamma(x,y)}{\pdiff\normvect(y)}, \end{align} after swappping the variables $x$ and $y$, we have the representation formula for the interior $\Int(\Omega)$ of $\Omega$ as below: \begin{equation} \label{eq:interior-representation-formula} u(x) = \int_{\Gamma} \gamma(x,y) \psi(y) \intd S(y) - \int_{\Gamma} K(x,y) u(y) \intd S(y) \quad (x \in \Int(\Omega)), \end{equation} where $\psi(y) = \frac{\pdiff u(y)}{\pdiff \normvect(y)}$ and $K(x,y) = \frac{\pdiff\gamma(x,y)}{\pdiff\normvect(y)}$. The first term in the above equation is the single layer potential, while the second term is the double layer potential.
Remark It can be seen that the interior representation formula in equation \eqref{eq:interior-representation-formula} has the same formulation as that derived from the direct method.
For the exterior $\Omega' = \mathbb{R}^d \backslash \overline{\Omega}$ of $\Omega$, a representation formula with the same formulation can be obtained as long as we assume that when $\abs{x} \rightarrow \infty$, both $\gamma(x,y)$ and $K(x,y)$ approach to zero, so that the integration on infinite boundary has no contribution. Therefore, the representation formula for the exterior of $\Omega$ is \begin{equation} \label{eq:exterior-representation-formula} u(x) = \int_{\Gamma} \gamma(x,y) \psi'(y) \intd S(y) - \int_{\Gamma} K'(x,y) u(y) \intd S(y) \quad (x \in \Int(\Omega')). \end{equation} Here $\psi'(y) = \frac{\pdiff u(y)}{\pdiff \normvect'(y)}$ and $K'(x,y) = \frac{\pdiff\gamma(x,y)}{\pdiff\normvect'(y)}$, where $\normvect'$ is the unit outward normal vector with respect to the domain $\Omega'$, which has opposite direction compared to $\normvect$.
Representation formula at the boundary $\Gamma$
It is well known that the single layer potential in equation \eqref{eq:interior-representation-formula} or \eqref{eq:exterior-representation-formula} is continuous across the boundary $\Gamma$, while the double layer potential has a jump, which is governed by the following theorem.
Theorem (Boundary limit of double layer potential) Let $\phi \in C(\Gamma)$ and $u$ be the double layer potential $$ u(x) = \int_{\Gamma} K(x,y) \phi(y) \intd S(y) \quad (x \in \mathbb{R}^d \backslash \Gamma) $$ with a charge density $\phi$. This equation has the following two cases:
- interior representation formula: $$ u(x) = \int_{\Gamma} K(x,y) \phi(y) \intd S(y) \quad (x \in \Omega) $$
- exterior representation formula: $$ u(x) = \int_{\Gamma} K'(x,y) \phi(y) \intd S(y) \quad (x \in \Omega') $$
Then the restrictions of $u$ to $\Omega$ and $\Omega'$ both have continuous extensions to $\overline{\Omega}$ and $\overline{\Omega'}$ respectively. Let $t \in \mathbb{R}$ and $\normvect$ be the unit outward normal vector of $\Omega$, the function $$ u_t(x) = u(x + t \normvect(x)) \quad (x \in \Gamma) $$ converges uniformly to $u_-$ when $t \rightarrow 0^-$ and to $u_+$ when $t \rightarrow 0^+$, where \begin{equation} \begin{aligned} u_{-}(x) &= -\frac{1}{2} \phi(x) + T_K\phi = -\frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \\ u_{+}(x) &= \frac{1}{2} \phi(x) + T_K\phi = \frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \end{aligned} \quad (x \in \Gamma). \end{equation}
Representation formula outside the domain $\Omega$
For the interior representation formula \eqref{eq:interior-representation-formula}, when the variable $x$ is outside the domain $\Omega$, $u$ evaluates to zero. This is because according to equation \eqref{eq:green-2nd-identity-with-fundamental-solution}, before swapping $x$ and $y$, when the variable $y$ is outside $\Omega$, the Dirac function $\Delta_x \gamma(x,y) = -\delta(x - y)$ evaluates to zero. Similarly, for the exterior representation formula \eqref{eq:exterior-representation-formula}, when the variable $x$ is outside the domain $\Omega'$, $u$ also evaluates to zero.
Summary of representation formulas' behavior in $\mathbb{R}^d$
By summarizing previous results, we can conclude that for the interior representation formula \eqref{eq:interior-representation-formula} \begin{equation} \label{eq:interior-representation-formula-behavior} \int_{\Gamma} \gamma(x,y) \psi(y) \intd S(y) - \int_{\Gamma} K(x,y) u(y) \intd S(y) = cu(x) \end{equation} where $$ c = \begin{cases} 1 & x \in \Int(\Omega) \\ \frac{1}{2} & x \in \Gamma \\ 0 & x \in \Int(\Omega') \end{cases} $$ Similarly for the exterior representation formula \eqref{eq:exterior-representation-formula} we have \begin{equation} \label{eq:exterior-representation-formula-behavior} \int_{\Gamma} \gamma(x,y) \psi'(y) \intd S(y) - \int_{\Gamma} K'(x,y) u(y) \intd S(y) = c'u(x) \end{equation} where $$ c' = \begin{cases} 1 & x \in \Int(\Omega') \\ \frac{1}{2} & x \in \Gamma \\ 0 & x \in \Int(\Omega) \end{cases} $$ If we also use the normal vector $\normvect$ with respect to $\Omega$ in \eqref{eq:interior-representation-formula-behavior}, we have \begin{equation} \label{eq:interior-representation-formula-with-normvect} -\int_{\Gamma} \gamma(x,y) \psi(y) \intd S(y) + \int_{\Gamma} K(x,y) u(y) \intd S(y) = c'u(x). \end{equation} It should be noted that although the left hand sides of \eqref{eq:interior-representation-formula-behavior} and \eqref{eq:interior-representation-formula-with-normvect} have the same form with opposite signs, they do not cancel with other because the limiting values of the double layer charge density $u$ used in the integral are approached to $\Gamma$ from interior and exterior respectively. Therefore, although the single layer potential is continuous across the boundary $\Gamma$, the double layer potential has a jump. Then we have the following jump behavior for the double layer potential at $\Gamma$ \begin{equation} \label{eq:double-layer-potential-jump} \int_{\Gamma} K(x,y) u(y)\big\vert_{\Omega'} \intd S(y) - \int_{\Gamma} K(x,y) u(y)\big\vert_{\Omega} \intd S(y) = u(x) \quad (x \in \Gamma), \end{equation} which is consistent with $u_+ - u_- = \phi$ derived from the theorem for the boundary limit of double layer potential.
Derive representation formula from Green’s identity的更多相关文章
- Discrete.Differential.Geometry-An.Applied.Introduction(sig2013) 笔记
The author has a course on web: http://brickisland.net/DDGSpring2016/ It has more reading assignment ...
- Introduction to boundary integral equations in BEM
Boundary element method (BEM) is an effective tool compared to finite element method (FEM) for resol ...
- R语言基础
一.扩展包的基本操作语句R安装好之后,默认自带了"stats" "graphics" "grDevices" "utils&qu ...
- Adjoint operators $T_K$ and $T_{K^{*}}$ in BEM
In our last article, we introduced four integral operators in the boundary integral equations in BEM ...
- Circles and Pi
Circles and Pi Introduction id: intro-1 For as long as human beings exist, we have looked to the sky ...
- 【ASP.NET Identity系列教程(一)】ASP.NET Identity入门
注:本文是[ASP.NET Identity系列教程]的第一篇.本系列教程详细.完整.深入地介绍了微软的ASP.NET Identity技术,描述了如何运用ASP.NET Identity实现应用程序 ...
- ASP.NET Identity 一 (转载)
来源:http://www.cnblogs.com/r01cn/p/5194257.html 注:本文是[ASP.NET Identity系列教程]的第一篇.本系列教程详细.完整.深入地介绍了微软的A ...
- ASP.NET Identity系列教程-2【Identity入门】
https://www.cnblogs.com/r01cn/p/5177708.html13 Identity入门 Identity is a new API from Microsoft to ma ...
- 论文解读GALA《Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning》
论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learn ...
随机推荐
- ansible配合shell脚本批量编译安装python3.6.6
[root@node1:/etc]# tree /etc/ansible/ /etc/ansible/ ├── ansible.cfg ├── hosts ├── python.yml └── rol ...
- 使用VW时,图片的问题
在项目中,使用了VW适配,给图片直接设置了width和height,浏览器模拟正常,在手机上就不显示 解决办法是:在图片外面包一层div,设置width和height,然后图片设置width:100% ...
- 我不是机器人:谷歌最新版验证码系统ReCaptcha破解已开源
选自 Github 作者:George Hughey 机器之心编译 每个人都讨厌验证码,这些恼人的图片中包含你必须输入的字符,我们只有正确地填写才能继续访问网站.验证码旨在确认访问者是人还是程序,并防 ...
- swift 实践- 01 -- UItableView的简单使用
import UIKit class ViewController: UIViewController ,UITableViewDelegate,UITableViewDataSource{ over ...
- Confluence 6 垃圾收集性能问题
这个文章与 Oracle 的 Hotspot JVM 虚拟机的内存管理为参照的.这些建议是我们在对大的 Confluence 安装实例用户进行咨询服务的时候得到的最佳配置方案. 请不要在 Conflu ...
- rpm命令用法小结
rpm 是用来管理 Redhat系列的包管理工具: 通过将打包编译好的程序包文件放置在各自的位置上,就完成了安装: rpm [OPTIONS] PACHAGE_FILE 1 安装:: -i : ...
- 如何使用PowerShell批量删除Office 365的用户
概述 本文将演示如何在必要的时候(例如在测试环境),通过PowerShell脚本批量删除Office 365的用户,首先需要通过Get-MsolUser的命令(并且配合筛选条件)获取到符合条件的用户列 ...
- Mycat节点扩缩容及高可用集群方案
数据迁移与扩容实践: 工具目前从 mycat1.6,准备工作:1.mycat 所在环境安装 mysql 客户端程序. 2.mycat 的 lib 目录下添加 mysql 的 jdbc 驱动包. 3.对 ...
- Django知识点汇总
Python的WEB框架有Django.Tornado.Flask 等多种,Django相较与其他WEB框架其优势为:大而全,框架本身集成了ORM.模型绑定.模板引擎.缓存.Session等诸多功能. ...
- JSTL 标准标签库 (JavaServer Pages Standard Tag library, JSTL)
JSP标准标签库(JavaServer Pages Standard Tag Library,JSTL)是一个定制标签库的集合,用来解决 像遍历Map或集合.条件测试.XML处理,甚至数据 库访问和数 ...