This article introduces how to derive the representation formula used in BEM from Green's identity.

Interior and exterior representation formulas

Let $u$ be a harmonic function in the free space $\mathbb{R}^d$: \begin{equation} \label{eq:harmonic-function} \triangle u = 0 \quad (x \in \mathbb{R}^d). \end{equation} Let $\gamma(x, y)$ be the fundamental solution for the free space such that \begin{equation} \label{eq:laplace-equation} -\triangle_x \gamma(x, y) = \delta(x - y) \quad (x, y \in \mathbb{R}^d). \end{equation} It has the following formulation: \begin{equation} \label{eq:fundamental-solution} \gamma(x, y) = \begin{cases} -\frac{1}{2\pi}\ln\lvert x - y \rvert & (d = 2) \\ \frac{\lvert x - y \rvert^{2-d}}{(d-2)\omega_d} & (d > 2) \end{cases}, \end{equation} where $\omega_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}$, $x$ is the field point and $y$ is the source point. Let $\psi$ and $\varphi$ be two functions having 2nd order derivatives in a bounded domain $\Omega$ in $\mathbb{R}^d$ with its boundary $\Gamma = \pdiff\Omega$. Let $\vect{F} = \psi\nabla\varphi - \varphi\nabla\psi$ and apply the Gauss divergence theorem, we have the famous Green's 2nd identity as below: \begin{equation} \label{eq:green-2nd-identity} \int_{\Omega} \left( \psi\triangle\varphi - \varphi\triangle\psi \right) \intd V = \int_{\Gamma} \left( \psi \frac{\pdiff\varphi}{\pdiff \normvect} - \varphi \frac{\pdiff \psi}{\pdiff \normvect} \right) \intd S, \end{equation} where $\normvect$ is the unit outward normal vector with respect to domain $\Omega$, which points from interior to exterior. By replacing $\psi$ with $\gamma(x,y)$ and $\varphi$ with $u(x)$, and performing integration and differentiation with respect to the variable $x$, we have \begin{equation} \label{eq:green-2nd-identity-with-fundamental-solution} \int_{\Omega} \left( \gamma(x,y)\triangle_x u(x) - u(x)\triangle_x\gamma(x,y) \right) \intd V(x) = \int_{\Gamma} \left( \gamma(x,y) \frac{\pdiff u(x)}{\pdiff \normvect(x)} - u(x) \frac{\pdiff \gamma(x,y)}{\pdiff \normvect(x)} \right) \intd S(x). \end{equation} After substituting \eqref{eq:harmonic-function} and \eqref{eq:laplace-equation}, we have $$ u(y) = \int_{\Gamma} \gamma(x,y) \frac{\pdiff u(x)}{\pdiff \normvect(x)} \intd S(x) - \int_{\Gamma} u(x) \frac{\pdiff \gamma(x,y)}{\pdiff \normvect(x)} \intd S(x) \quad (y \in \Int(\Omega)). $$ where $\Int(\Omega)$ is the interior of $\Omega$. Due to the symmetric property of the fundamental solution \begin{align} \label{eq:fundamental-solution-symmetry} \gamma(x,y) &= \gamma(y,x) \\ \frac{\pdiff\gamma(y,x)}{\pdiff \normvect(y)} = K^{*}(y,x) &= K(x,y) = \frac{\pdiff\gamma(x,y)}{\pdiff\normvect(y)}, \end{align} after swappping the variables $x$ and $y$, we have the representation formula for the interior $\Int(\Omega)$ of $\Omega$ as below: \begin{equation} \label{eq:interior-representation-formula} u(x) = \int_{\Gamma} \gamma(x,y) \psi(y) \intd S(y) - \int_{\Gamma} K(x,y) u(y) \intd S(y) \quad (x \in \Int(\Omega)), \end{equation} where $\psi(y) = \frac{\pdiff u(y)}{\pdiff \normvect(y)}$ and $K(x,y) = \frac{\pdiff\gamma(x,y)}{\pdiff\normvect(y)}$. The first term in the above equation is the single layer potential, while the second term is the double layer potential.

Remark It can be seen that the interior representation formula in equation \eqref{eq:interior-representation-formula} has the same formulation as that derived from the direct method.

For the exterior $\Omega' = \mathbb{R}^d \backslash \overline{\Omega}$ of $\Omega$, a representation formula with the same formulation can be obtained as long as we assume that when $\abs{x} \rightarrow \infty$, both $\gamma(x,y)$ and $K(x,y)$ approach to zero, so that the integration on infinite boundary has no contribution. Therefore, the representation formula for the exterior of $\Omega$ is \begin{equation} \label{eq:exterior-representation-formula} u(x) = \int_{\Gamma} \gamma(x,y) \psi'(y) \intd S(y) - \int_{\Gamma} K'(x,y) u(y) \intd S(y) \quad (x \in \Int(\Omega')). \end{equation} Here $\psi'(y) = \frac{\pdiff u(y)}{\pdiff \normvect'(y)}$ and $K'(x,y) = \frac{\pdiff\gamma(x,y)}{\pdiff\normvect'(y)}$, where $\normvect'$ is the unit outward normal vector with respect to the domain $\Omega'$, which has opposite direction compared to $\normvect$.

Representation formula at the boundary $\Gamma$

It is well known that the single layer potential in equation \eqref{eq:interior-representation-formula} or \eqref{eq:exterior-representation-formula} is continuous across the boundary $\Gamma$, while the double layer potential has a jump, which is governed by the following theorem.

Theorem (Boundary limit of double layer potential) Let $\phi \in C(\Gamma)$ and $u$ be the double layer potential $$ u(x) = \int_{\Gamma} K(x,y) \phi(y) \intd S(y) \quad (x \in \mathbb{R}^d \backslash \Gamma) $$ with a charge density $\phi$. This equation has the following two cases:

  1. interior representation formula: $$ u(x) = \int_{\Gamma} K(x,y) \phi(y) \intd S(y) \quad (x \in \Omega) $$
  2. exterior representation formula: $$ u(x) = \int_{\Gamma} K'(x,y) \phi(y) \intd S(y) \quad (x \in \Omega') $$

Then the restrictions of $u$ to $\Omega$ and $\Omega'$ both have continuous extensions to $\overline{\Omega}$ and $\overline{\Omega'}$ respectively. Let $t \in \mathbb{R}$ and $\normvect$ be the unit outward normal vector of $\Omega$, the function $$ u_t(x) = u(x + t \normvect(x)) \quad (x \in \Gamma) $$ converges uniformly to $u_-$ when $t \rightarrow 0^-$ and to $u_+$ when $t \rightarrow 0^+$, where \begin{equation} \begin{aligned} u_{-}(x) &= -\frac{1}{2} \phi(x) + T_K\phi = -\frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \\ u_{+}(x) &= \frac{1}{2} \phi(x) + T_K\phi = \frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \end{aligned} \quad (x \in \Gamma). \end{equation}

Representation formula outside the domain $\Omega$

For the interior representation formula \eqref{eq:interior-representation-formula}, when the variable $x$ is outside the domain $\Omega$, $u$ evaluates to zero. This is because according to equation \eqref{eq:green-2nd-identity-with-fundamental-solution}, before swapping $x$ and $y$, when the variable $y$ is outside $\Omega$, the Dirac function $\Delta_x \gamma(x,y) = -\delta(x - y)$ evaluates to zero. Similarly, for the exterior representation formula \eqref{eq:exterior-representation-formula}, when the variable $x$ is outside the domain $\Omega'$, $u$ also evaluates to zero.

Summary of representation formulas' behavior in $\mathbb{R}^d$

By summarizing previous results, we can conclude that for the interior representation formula \eqref{eq:interior-representation-formula} \begin{equation} \label{eq:interior-representation-formula-behavior} \int_{\Gamma} \gamma(x,y) \psi(y) \intd S(y) - \int_{\Gamma} K(x,y) u(y) \intd S(y) = cu(x) \end{equation} where $$ c = \begin{cases} 1 & x \in \Int(\Omega) \\ \frac{1}{2} & x \in \Gamma \\ 0 & x \in \Int(\Omega') \end{cases} $$ Similarly for the exterior representation formula \eqref{eq:exterior-representation-formula} we have \begin{equation} \label{eq:exterior-representation-formula-behavior} \int_{\Gamma} \gamma(x,y) \psi'(y) \intd S(y) - \int_{\Gamma} K'(x,y) u(y) \intd S(y) = c'u(x) \end{equation} where $$ c' = \begin{cases} 1 & x \in \Int(\Omega') \\ \frac{1}{2} & x \in \Gamma \\ 0 & x \in \Int(\Omega) \end{cases} $$ If we also use the normal vector $\normvect$ with respect to $\Omega$ in \eqref{eq:interior-representation-formula-behavior}, we have \begin{equation} \label{eq:interior-representation-formula-with-normvect} -\int_{\Gamma} \gamma(x,y) \psi(y) \intd S(y) + \int_{\Gamma} K(x,y) u(y) \intd S(y) = c'u(x). \end{equation} It should be noted that although the left hand sides of \eqref{eq:interior-representation-formula-behavior} and \eqref{eq:interior-representation-formula-with-normvect} have the same form with opposite signs, they do not cancel with other because the limiting values of the double layer charge density $u$ used in the integral are approached to $\Gamma$ from interior and exterior respectively. Therefore, although the single layer potential is continuous across the boundary $\Gamma$, the double layer potential has a jump. Then we have the following jump behavior for the double layer potential at $\Gamma$ \begin{equation} \label{eq:double-layer-potential-jump} \int_{\Gamma} K(x,y) u(y)\big\vert_{\Omega'} \intd S(y) - \int_{\Gamma} K(x,y) u(y)\big\vert_{\Omega} \intd S(y) = u(x) \quad (x \in \Gamma), \end{equation} which is consistent with $u_+ - u_- = \phi$ derived from the theorem for the boundary limit of double layer potential.

Derive representation formula from Green’s identity的更多相关文章

  1. Discrete.Differential.Geometry-An.Applied.Introduction(sig2013) 笔记

    The author has a course on web: http://brickisland.net/DDGSpring2016/ It has more reading assignment ...

  2. Introduction to boundary integral equations in BEM

    Boundary element method (BEM) is an effective tool compared to finite element method (FEM) for resol ...

  3. R语言基础

    一.扩展包的基本操作语句R安装好之后,默认自带了"stats" "graphics"  "grDevices" "utils&qu ...

  4. Adjoint operators $T_K$ and $T_{K^{*}}$ in BEM

    In our last article, we introduced four integral operators in the boundary integral equations in BEM ...

  5. Circles and Pi

    Circles and Pi Introduction id: intro-1 For as long as human beings exist, we have looked to the sky ...

  6. 【ASP.NET Identity系列教程(一)】ASP.NET Identity入门

    注:本文是[ASP.NET Identity系列教程]的第一篇.本系列教程详细.完整.深入地介绍了微软的ASP.NET Identity技术,描述了如何运用ASP.NET Identity实现应用程序 ...

  7. ASP.NET Identity 一 (转载)

    来源:http://www.cnblogs.com/r01cn/p/5194257.html 注:本文是[ASP.NET Identity系列教程]的第一篇.本系列教程详细.完整.深入地介绍了微软的A ...

  8. ASP.NET Identity系列教程-2【Identity入门】

    https://www.cnblogs.com/r01cn/p/5177708.html13 Identity入门 Identity is a new API from Microsoft to ma ...

  9. 论文解读GALA《Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning》

    论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learn ...

随机推荐

  1. HDU - 1402 A * B Problem Plus FFT裸题

    http://acm.hdu.edu.cn/showproblem.php?pid=1402 题意: 求$a*b$ 但是$a$和$b$的范围可以达到 $1e50000$ 题解: 显然...用字符串模拟 ...

  2. Openssl源代码整理学习---含P7/P10/P12说明

    声明:建议结合Openssl源代码学习: 一.基础知识 1.Openssl 简史 OpenSSL项目是加拿大人Eric A.Yang 和Tim J.Hudson开发,现在有Openssl项目小组负责改 ...

  3. 缓存系列之五:通过codis3.2实现redis3.2.8集群的管理

    通过codis3.2实现redis3.2.8集群 一:Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没 ...

  4. codis3.2安装报错dashboard.go:369: [PANIC] call rpc create-proxy to dashboard 127.0.0.1:18080 failed的处理

    codis3.2安装报错dashboard.go:369: [PANIC] call rpc create-proxy to dashboard 127.0.0.1:18080 failed的处理 执 ...

  5. scrapy-redis(调度器Scheduler源码分析)

    settings里面的配置:'''当下面配置了这个(scrapy-redis)时候,下面的调度器已经配置在scrapy-redis里面了'''##########连接配置######## REDIS_ ...

  6. MYSQL连不上

    如果你想连接你的MySQL的时候发生这个错误: ERROR 1130: Host '192.168.1.3' is not allowed to connect to this MySQL serve ...

  7. 手机端上点击input框软键盘出现时把input框不被覆盖,显示在屏幕中间(转)

    转载地址:https://www.cnblogs.com/xzzzys/p/7526761.html 1  用定位为题来解决var oHeight = $(document).height(); // ...

  8. 信息摘要算法之二:SHA1算法分析及实现

    SHA算法,即安全散列算法(Secure Hash Algorithm)是一种与MD5同源的数据加密算法,该算法经过加密专家多年来的发展和改进已日益完善,现在已成为公认的最安全的散列算法之一,并被广泛 ...

  9. 神经网络之dropout层

    一:引言 因为在机器学习的一些模型中,如果模型的参数太多,而训练样本又太少的话,这样训练出来的模型很容易产生过拟合现象.在训练bp网络时经常遇到的一个问题,过拟合指的是模型在训练数据上损失函数比较小, ...

  10. 数据库技术丛书:SQL Server 2016 从入门到实战(视频教学版) PDF

    1:书籍下载方式: SQL Server2016从入门到实战 PDF 下载  链接:https://pan.baidu.com/s/1sWZjdud4RosPyg8sUBaqsQ 密码:8z7w 学习 ...