2^x mod n = 1

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9231    Accepted Submission(s): 2837

Problem Description
Give a number n, find the minimum x(x>0) that satisfies 2^x mod n = 1.
 
Input
One positive integer on each line, the value of n.
 
Output
If the minimum x exists, print a line with 2^x mod n = 1.

Print 2^? mod n = 1 otherwise.

You should replace x and n with specific numbers.

 
思路:
1. 当n为偶数时,bn + 1(b为整数)是奇数,而2^x是偶数,故 2^x mod n = 1不可能成立;
2. 当n等于1时,不能成立
3. 当n为非1的奇数时,n和2互质,由欧拉定理:若a,n为正整数,且两者互素,则a^phi(n) mod n = 1,其中phi(n)是n的欧拉函数。知2^phi(n) mod n = 1.因此phi(n)必是符合要求的x,但phi(n)未必是最小的,遍历小于其的正整数,逐一试验即可,计算2^x mod n时用快速幂乘。
 
AC Code:
 #include <iostream>
#include <vector>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std; //计算n的欧拉函数
int Eular(int n)
{
int res = , i;
for (i = ; i * i <= n; i++){
if (n % i == ){
n /= i;
res *= (i - );
while (n % i == ){
n /= i;
res *= i;
}
}
}
if (n > ) res *= (n - );
return res;
} //快速幂乘计算2^b % n
int myPow(int b, int n)
{
if(b == ) return ;
long long c = myPow(b >> , n);
c = (c * c) % n;
if(b & ) c = ( * c) % n;
return c;
} int main()
{
int n, x;
bool ok;
while(scanf("%d", &n) != EOF){
ok = ;
if((n & ) && (n - )){
ok = ;
int phi = Eular(n);
for(x = ; x < phi; x++){
if(myPow(x, n) == ) break;
}
}
if(ok) printf("2^%d mod %d = 1\n", x, n);
else printf("2^%? mod %d = 1\n", n);
}
return ;
}

2^x mod n = 1(欧拉定理,欧拉函数,快速幂乘)的更多相关文章

  1. XMU 1615 刘备闯三国之三顾茅庐(三) 【欧拉函数+快速幂+欧拉定理】

    1615: 刘备闯三国之三顾茅庐(三) Time Limit: 1000 MS  Memory Limit: 128 MBSubmit: 45  Solved: 8[Submit][Status][W ...

  2. hdu 3307 Description has only two Sentences (欧拉函数+快速幂)

    Description has only two SentencesTime Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  3. 牛客训练:小a与黄金街道(欧拉函数+快速幂)

    题目链接:传送门 思路:欧拉函数的性质:前n个数的欧拉函数之和为φ(n)*n/2,由此求出结果. 参考文章:传送门 #include<iostream> #include<cmath ...

  4. 数学知识-欧拉函数&快速幂

    欧拉函数 定义 对于正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目,记作φ(n). 算法思路 既然求解每个数的欧拉函数,都需要知道他的质因子,而不需要个数 因此,我们只需求出他的质因子, ...

  5. Exponial (欧拉定理+指数循环定理+欧拉函数+快速幂)

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2021 Description Everybody loves big numbers ...

  6. 小a与黄金街道(欧拉函数+快速幂)

    链接:https://ac.nowcoder.com/acm/contest/317/D 来源:牛客网 题目描述 小a和小b来到了一条布满了黄金的街道上.它们想要带几块黄金回去,然而这里的城管担心他们 ...

  7. hdu1395 2^x mod n = 1(欧拉函数)

    2^x mod n = 1 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  8. CF思维联系– CodeForces -CodeForces - 992C Nastya and a Wardrobe(欧拉降幂+快速幂)

    Nastya received a gift on New Year - a magic wardrobe. It is magic because in the end of each month ...

  9. [LightOJ 1370] Bi-shoe and Phi-shoe(欧拉函数快速筛法)

    题目链接: https://vjudge.net/problem/LightOJ-1370 题目描述: 给出一些数字,对于每个数字找到一个欧拉函数值大于等于这个数的数,求找到的所有数的最小和. 知识点 ...

  10. 【BZOJ 1409】 Password 数论(扩展欧拉+矩阵快速幂+快速幂)

    读了一下题就会很愉快的发现,这个数列是关于p的幂次的斐波那契数列,很愉快,然后就很愉快的发现可以矩阵快速幂一波,然后再一看数据范围就......然后由于上帝与集合对我的正确启示,我就发现这个东西可以用 ...

随机推荐

  1. Qt之Dialog\widget\ mainwindow的区别和布局管理器 & 分裂器的区别

    1.Dialog\widget\ mainwindow的区别 注意mainwindow和widget的区别,mainwindow都工具栏和菜单栏 Dialog and mainwinodws 都是继承 ...

  2. JQuery官方学习资料(译):使用JQuery的.index()方法

        .index()是一个JQuery对象方法,一般用于搜索JQuery对象上一个给定的元素.该方法有四种不同的函数签名,接下来将讲解这四种函数签名的具体用法. 无参数的.index() < ...

  3. C语言实现二叉树-利用二叉树统计单词数目

    昨天刚参加了腾讯2015年在线模拟考: 四道大题的第一题就是单词统计程序的设计思想: 为了记住这一天,我打算今天通过代码实现一下: 我将用到的核心数据结构是二叉树: (要是想了解简单二叉树的实现,可以 ...

  4. piap.excel 微软 时间戳转换mssql sql server文件时间戳转换unix 导入mysql

    piap.excel 微软 时间戳转换mssql sql server文件时间戳转换unix 导入mysql 需要不个mssql的sql文件导入mysql.他们的时间戳格式不同..ms用的是自定义的时 ...

  5. Leetcode 344 Reverse String 字符串处理

    题意:反转字符串,用好库函数. class Solution { public: string reverseString(string s) { reverse(s.begin(),s.end()) ...

  6. Leetcode 328 Odd Even Linked List 链表

    Given 1->2->3->4->5->NULL, return 1->3->5->2->4->NULL. 就是将序号为单数的放在前面,而 ...

  7. javascript基础08

    发现今天居然没有要写,那我就写写之前做的笔记吧. 这是事件的深入: 拖拽逻辑: 第一个: onmousedown : 选择元素 第二个: onmousemove : 移动元素 第三个:onmouseu ...

  8. Android BitmapShader 实战 实现圆形、圆角图片

    转载自:http://blog.csdn.net/lmj623565791/article/details/41967509 1.概述 记得初学那会写过一篇博客Android 完美实现图片圆角和圆形( ...

  9. loghelper.cs 代码

    唉,网上到处找一圈,真是麻烦,自己结合别人写的,重新整理一个. 这个破玩意最大的作用就是写微信那种没法顺利断点调试的程序的时候,在需要的地方写日志,然后去查看.真是回到当年用DW4写php的年代了,可 ...

  10. cocos2d-x 3.0rc2中读取sqlite文件

    cocos2d-x 3.0rc2中读取sqlite文件的方式,在Android中直接读取软件内的会失败.须要复制到可写的路径下 sqlite3* dbFile = NULL; std::string ...