Subgradient是一种可以优化不可微的凸函数的方法.

首先回顾凸函数的定义:

$f(y) \geq f(x) + \nabla f(x)^T(y-x), all \hspace{2 pt} x, y$

凸函数的subgradient的定义为满足以下条件的$g\in \mathcal{R}^n$

$f(y) \geq f(x) + g^T(y-x), all \hspace{2 pt} y$

subgradient具有以下特性:

  • 永远存在
  • 如果$f$在$x$处可微, 那么$g=\nabla f(x)$
  • 对于非凸函数也有类似的定义, 但是非凸函数的subgradient并不需要存在

几个例子:

例1. $f: \mathcal{R} \to \mathcal{R}, f(x) = |x|$

对于$x\neq 0, g=sign(x)$

对于$x=0, g$是$[-1, 1]$中的任一元素

例2. $f: \mathcal{R}^n \to \mathcal{R}, f(x) = \|x\|$

对于$x\neq 0, g=\frac{x}{\|x\|}$

对于$x=0, g$是${z: \|z\|\geq1}$中的任一元素

例3. $f: \mathcal{R}^n \to \mathcal{R}, f(x) = \|x\|_1$

对于$x\neq 0, g_i=sign(x_i)$

对于$x=0, g$是$[-1, 1]$中的任一元素

Subdifferential

凸函数$f$在某一点$x$的所有subgradient称为在该点的subdifferential.

subdifferential的特性:

  • $\partial f(x)$是凸的(即使对于非凸函数$f$)
  • 非空(低于非凸函数$f$可能是空的)
  • 如果$f$在$x$是可微的, 则$\partial f(x)={\nabla f(x)}$
  • 如果$\partial f(x)={g}$, 那么f是科委的, 并且$\nabla f(x)=g$

优化条件

对于凸函数$f$,

$f(x^*) = \min_{x \in \mathcal{R}^n} \iff 0 \in \partial f(x^*)$

亦即, $x$是$f$的最小点当且仅当$0$是$f$在$x^*$的subgradient

因为如果$g=0$, 则对于所有的$y$: $f(y) \geq f(x^*) + o^T(y-x^*)=f(x^*)$

Soft-thresholding

考虑如下的lasso问题

$\min_x \frac{1}{2}\|y-Ax\|^2 + \lambda\|x\|_1$, 其中$\lambda \geq 0$

简化一下上述问题, 令$A=I$:

$\min_x \frac{1}{2}\|y-x\|^2 + \lambda\|x\|_1$

上式的subgradient为:

$g=x-y+\lambda s$

其中

令$g=0$, 可以得到$x^*=S_{\lambda}(y)$:

$S_{\lambda}(y)= \begin{cases}y_i-\lambda & if y_i > \lambda \\ 0& if -\lambda\leq y_i \leq \lambda \\ y_i + \lambda & if y_i < -\lambda \end{cases}$

Subgradient method

对于凸函数(不一定可微)$f: \mathcal{R}^n \to \mathcal{R}$, 在优化时将梯度替换为subgradient既是subgradient method:

$x^{(k)}=x^{(k-1)} - t_k \cdot g^{(k-1)}, k=1,2,3,...$

其中$g^{(k-1)}$是$f$在$x^{(k-1)}$的任意subgradient

subgradient method不一定是一个descent method, 所以需要取所有迭代中最小的那个(而不是最后一个)

$f(x_{best}^{(k)})=\min_{i=1,...,k}f(x^{(i)})$

参考文献

[1]. Subgradient method. Geoff Gordon, Ryan Tibshirani

226 total views, 1 views today

Subgradient Algorithm的更多相关文章

  1. Pegasos: Primal Estimated sub-GrAdient Solver for SVM

    Abstract We describe and analyze a simple and effective iterative algorithm for solving the optimiza ...

  2. 挑子学习笔记:两步聚类算法(TwoStep Cluster Algorithm)——改进的BIRCH算法

    转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/twostep_cluster_algorithm.html 两步聚类算法是在SPSS Modeler中使用的 ...

  3. PE Checksum Algorithm的较简实现

    这篇BLOG是我很早以前写的,因为现在搬移到CNBLOGS了,经过整理后重新发出来. 工作之前的几年一直都在搞计算机安全/病毒相关的东西(纯学习,不作恶),其中PE文件格式是必须知识.有些PE文件,比 ...

  4. [异常解决] windows用SSH和linux同步文件&linux开启SSH&ssh client 报 algorithm negotiation failed的解决方法之一

    1.安装.配置与启动 SSH分客户端openssh-client和openssh-server 如果你只是想登陆别的机器的SSH只需要安装openssh-client(ubuntu有默认安装,如果没有 ...

  5. [Algorithm] 使用SimHash进行海量文本去重

    在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(L ...

  6. Backtracking algorithm: rat in maze

    Sept. 10, 2015 Study again the back tracking algorithm using recursive solution, rat in maze, a clas ...

  7. [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型

    深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...

  8. [Algorithm] 群体智能优化算法之粒子群优化算法

    同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简 ...

  9. [Evolutionary Algorithm] 进化算法简介

    进化算法,也被成为是演化算法(evolutionary algorithms,简称EAs),它不是一个具体的算法,而是一个“算法簇”.进化算法的产生的灵感借鉴了大自然中生物的进化操作,它一般包括基因编 ...

随机推荐

  1. LInux iptables学习

    作者原文 : http://blog.chinaunix.net/uid-9950859-id-98277.html       要在网上传输的数据会被分成许多小的数据包,我们一旦接通了网络,会有很多 ...

  2. Oracle操作语言分类

    Oracle数据库语言总的来说分为三类:DDL,DML,DCL 1.DML(Data Manipulation Language,数据操作语言):用于检索或者修改数据. DML包括: SELECT:用 ...

  3. sqlserver数据库维护脚本大全,值得收藏

    下面的代码非但有图文,简直是视频,地址http://www.cnthc.com/?/article/67http://www.cnthc.com/?/article/73 --创建一个玩的数据库Cre ...

  4. Linux Netcat 命令——网络工具中的瑞士军刀

    原文:http://www.oschina.net/translate/linux-netcat-command netcat是网络工具中的瑞士军刀,它能通过TCP和UDP在网络中读写数据.通过与其他 ...

  5. 基于Chromium构建Chrome WebBrowser for .net 控件(还有点心得体会)

    http://blog.csdn.net/lllllllllluoyi/article/details/8540054 首先向360说句sorry,在2011年360极速浏览器出现的时候我去他们论坛里 ...

  6. 从此爱上iOS Autolayout

    转:从此爱上iOS Autolayout 这篇不是autolayout教程,只是autolayout动员文章和经验之谈,在本文第五节友情链接和推荐中,我将附上足够大家熟练使用autolayout的教程 ...

  7. Serializable 和 Parcelable 区别

    http://www.jcodecraeer.com/a/anzhuokaifa/androidkaifa/2015/0204/2410.html http://www.cnblogs.com/blu ...

  8. Level shifting a +/- 2.5V signal to 0 - 5V

    Google : Op-Amp Level Shifter Level shifting a +/- 2.5V signal to 0 - 5V I have a front end module t ...

  9. 【VerySky原创】RPR_ABAP_SOURCE_SCAN

    [VerySky原创]RPR_ABAP_SOURCE_SCAN 扫描 ABAP 报表源

  10. Android——程序移植 相关知识总结贴

    android 移植笔记有感 http://www.apkbus.com/android-11842-1-1.html   Android振动器系统结构和移植和调试 http://www.apkbus ...