Subgradient Algorithm
Subgradient是一种可以优化不可微的凸函数的方法.
首先回顾凸函数的定义:
$f(y) \geq f(x) + \nabla f(x)^T(y-x), all \hspace{2 pt} x, y$
凸函数的subgradient的定义为满足以下条件的$g\in \mathcal{R}^n$
$f(y) \geq f(x) + g^T(y-x), all \hspace{2 pt} y$
subgradient具有以下特性:
- 永远存在
- 如果$f$在$x$处可微, 那么$g=\nabla f(x)$
- 对于非凸函数也有类似的定义, 但是非凸函数的subgradient并不需要存在
几个例子:
例1. $f: \mathcal{R} \to \mathcal{R}, f(x) = |x|$
对于$x\neq 0, g=sign(x)$
对于$x=0, g$是$[-1, 1]$中的任一元素
例2. $f: \mathcal{R}^n \to \mathcal{R}, f(x) = \|x\|$
对于$x\neq 0, g=\frac{x}{\|x\|}$
对于$x=0, g$是${z: \|z\|\geq1}$中的任一元素
例3. $f: \mathcal{R}^n \to \mathcal{R}, f(x) = \|x\|_1$
对于$x\neq 0, g_i=sign(x_i)$
对于$x=0, g$是$[-1, 1]$中的任一元素
Subdifferential
凸函数$f$在某一点$x$的所有subgradient称为在该点的subdifferential.
subdifferential的特性:
- $\partial f(x)$是凸的(即使对于非凸函数$f$)
- 非空(低于非凸函数$f$可能是空的)
- 如果$f$在$x$是可微的, 则$\partial f(x)={\nabla f(x)}$
- 如果$\partial f(x)={g}$, 那么f是科委的, 并且$\nabla f(x)=g$
优化条件
对于凸函数$f$,
$f(x^*) = \min_{x \in \mathcal{R}^n} \iff 0 \in \partial f(x^*)$
亦即, $x$是$f$的最小点当且仅当$0$是$f$在$x^*$的subgradient
因为如果$g=0$, 则对于所有的$y$: $f(y) \geq f(x^*) + o^T(y-x^*)=f(x^*)$
Soft-thresholding
考虑如下的lasso问题
$\min_x \frac{1}{2}\|y-Ax\|^2 + \lambda\|x\|_1$, 其中$\lambda \geq 0$
简化一下上述问题, 令$A=I$:
$\min_x \frac{1}{2}\|y-x\|^2 + \lambda\|x\|_1$
上式的subgradient为:
$g=x-y+\lambda s$
其中
令$g=0$, 可以得到$x^*=S_{\lambda}(y)$:
$S_{\lambda}(y)= \begin{cases}y_i-\lambda & if y_i > \lambda \\ 0& if -\lambda\leq y_i \leq \lambda \\ y_i + \lambda & if y_i < -\lambda \end{cases}$
Subgradient method
对于凸函数(不一定可微)$f: \mathcal{R}^n \to \mathcal{R}$, 在优化时将梯度替换为subgradient既是subgradient method:
$x^{(k)}=x^{(k-1)} - t_k \cdot g^{(k-1)}, k=1,2,3,...$
其中$g^{(k-1)}$是$f$在$x^{(k-1)}$的任意subgradient
subgradient method不一定是一个descent method, 所以需要取所有迭代中最小的那个(而不是最后一个)
$f(x_{best}^{(k)})=\min_{i=1,...,k}f(x^{(i)})$
参考文献
[1]. Subgradient method. Geoff Gordon, Ryan Tibshirani
226 total views, 1 views today
Subgradient Algorithm的更多相关文章
- Pegasos: Primal Estimated sub-GrAdient Solver for SVM
Abstract We describe and analyze a simple and effective iterative algorithm for solving the optimiza ...
- 挑子学习笔记:两步聚类算法(TwoStep Cluster Algorithm)——改进的BIRCH算法
转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/twostep_cluster_algorithm.html 两步聚类算法是在SPSS Modeler中使用的 ...
- PE Checksum Algorithm的较简实现
这篇BLOG是我很早以前写的,因为现在搬移到CNBLOGS了,经过整理后重新发出来. 工作之前的几年一直都在搞计算机安全/病毒相关的东西(纯学习,不作恶),其中PE文件格式是必须知识.有些PE文件,比 ...
- [异常解决] windows用SSH和linux同步文件&linux开启SSH&ssh client 报 algorithm negotiation failed的解决方法之一
1.安装.配置与启动 SSH分客户端openssh-client和openssh-server 如果你只是想登陆别的机器的SSH只需要安装openssh-client(ubuntu有默认安装,如果没有 ...
- [Algorithm] 使用SimHash进行海量文本去重
在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(L ...
- Backtracking algorithm: rat in maze
Sept. 10, 2015 Study again the back tracking algorithm using recursive solution, rat in maze, a clas ...
- [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型
深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...
- [Algorithm] 群体智能优化算法之粒子群优化算法
同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简 ...
- [Evolutionary Algorithm] 进化算法简介
进化算法,也被成为是演化算法(evolutionary algorithms,简称EAs),它不是一个具体的算法,而是一个“算法簇”.进化算法的产生的灵感借鉴了大自然中生物的进化操作,它一般包括基因编 ...
随机推荐
- ActiveReports 9实战教程(3): 图文并茂的报表形式
基于上面2节内容,我们搭建了AR9的开发环境,配置好了数据源.在本节,我们以官方提供的3个中文图文并茂的报表来展示AR9的功能,并通过实战的方式一一分享. 以往做报表相关的工作时,最害怕的是报表的UI ...
- JS 数字转换为大写金额
function DX(n) { if (!/^(0|[1-9]\d*)(\.\d+)?$/.test(n)) return "数据非法"; var unit = "千百 ...
- avalon实现一个简单的带增删改查的成绩单
自从angular问世,一直就有去了解学习angular,一直想用angular去做一个项目,但无奈,大ng是国外产物,ng1.2版本就只兼容到IE8,1.3后的几个版本提升到IE9,据说NG2.0更 ...
- Atitit..文件上传组件选型and最佳实践总结(3)----断点续传控件的实现
Atitit..文件上传组件选型and最佳实践总结(3)----断点续传控件的实现 1. 实现思路:::元插件,元设置... 1 2. 实现流程downzip,unzip,exec 1 3. Zip ...
- 数据类型/强制类型转换 和运算符---标识符规则/关键字 a++和++a区别
3.2关键字都是小写,TRUE FALSE NULL都不是Java关键字 3.3数据类型 变量相当于一个有名称的容器,该容器用于装各种不同类型的数据 Java类型分为2种 基本类型: 引用类型: 基本 ...
- Leetcode 1 Two Sum STL
题意:给定一个目标值target,找到两个数的和为target,返回这两个数的下标 用map记录每个数的下标,并用于查找 class Solution { public: vector<int& ...
- SpringMVC 架构
SpringMVC 架构 1. 前言 SpringMVC是目前java世界中最为广泛应用的web框架,最然从学习SpringMVC的第一个程序--helloworld至今,已有好几个年头.其间伴随着项 ...
- 命令行将本地代码上传到github及修改github上代码
第一步:建立git仓库 cd到你的本地项目根目录下,(这是我的细目目录) 执行git命令 git init 第二步:将项目的所有文件添加到仓库中 git add . 如果想添加某个特定的文件,只需把. ...
- MySQL Cluster 7.3.3 官方版本下载
MySQL Cluster 是 MySQL 适合于分布式计算环境的高实用.高冗余版本.它采用了NDB Cluster 存储引擎,允许在1个 Cluster 中运行多个MySQL服务器.在MyQL 5. ...
- 【Android】 TextView设置个别字体样式
SpannableString msp = new SpannableString("测试"+XM+"更换当前号码将从手机发送一条普通短信进行验证"); msp ...