来源:刘汝佳《算法竞赛入门经典--训练指南》 P60 问题6:

问题描述:给定n个整数a1,a2,...,an,按从左到右的顺序选出尽量多的整数,组成一个上升子序列(子序列可以理解为:删除0个或多个数,其他的数顺序不变)。比如,从序列1,6,2,3,7,5中,可以选上升子序列1,2,3,5,也可以选出1,6,7;但前者更长。选出的相邻元素不能相等。

O(n^2)的时间复杂度思路分析:设d[i]为以i结尾的最长上升子序列的长度,则d[i]=Max{0,d[j](满足j<i,aj<a[i])}+1。最终的答案为Max{d[i]}。

(若LIS中的相邻元素可以相等,把“<”改为“<=”即可)。

O(nlog(n))的时间复杂度思路分析:假设经过计算出的两个状态i和j满足ai<aj && d[i]==d[j];则只需要保存ai状态即可(对于后续状态k来说,若ak>ai,则ak一定大于aj,反之则不一定)。我们可以用g[i]表示当前状态(从第一个数开始)下子序列长度为i的最小数,则每考虑后续的数加入的时候,更新g[]即可(二分查找)。(Tips:该思路只适合求最大长度问题)

例题来源:http://acm.nyist.net/JudgeOnline/problem.php?pid=17

例题:nyoj 17

单调递增最长子序列

时间限制:3000 ms  |  内存限制:65535 KB
难度:4
 
描述
求一个字符串的最长递增子序列的长度
如:dabdbf最长递增子序列就是abdf,长度为4 
输入
第一行一个整数0<n<20,表示有n个字符串要处理
随后的n行,每行有一个字符串,该字符串的长度不会超过10000
输出
输出字符串的最长递增子序列的长度
样例输入
3
aaa
ababc
abklmncdefg
样例输出
1
3
7

O(n^2)时间复杂度代码:

 #include "stdio.h"
#include "string.h" #define N 10100 int d[N];
char str[N]; int inline Max(int a,int b) { return a>b?a:b; } int main()
{
int T;
int i,j;
int len;
scanf("%d",&T);
while(T--)
{
scanf("%s",str);
len = strlen(str);
int ans = ;
for(i=; i<len; ++i)
{
d[i] = ;
for(j=; j<i; j++)
{
if(str[i]>str[j])
d[i] = Max(d[i],d[j]+);
}
ans = ans>d[i]?ans:d[i];
}
printf("%d\n",ans);
}
return ;
}

O(nlog(n))的时间复杂度代码:

 #include "stdio.h"
#include "string.h"
#define N 10005
#define INF 0x3fffffff int num; //num记录当前序列中,最长子序列的长度
int g[N]; //g[i]保存当前序列中,长度为i的上升子序列的最小字符
char str[N]; int er_fen(int l,int r,int k) //二分查找,返回值为数组g[]中小于k的最右边的数的下标
{
int mid;
if(k>g[r]) return r; //都比k小,返回r
if(k<=g[l]) return ; //都比k大,返回0
while(l+!=r)
{
mid = (l+r)/;
if(g[mid] < k)
l = mid;
else
r = mid;
}
return l;
} int main()
{
int T;
int i,k,len;
scanf("%d",&T);
getchar();
while(T--)
{
scanf("%s",str);
len = strlen(str);
for(i=,num=; i<len; i++)
g[i] = INF;
num = ;
g[] = str[];
for(i=; i<len; i++)
{
k = er_fen(,num,(int)str[i]);
if(g[k+] > str[i])
g[k+] = str[i];
if(k==num)
num++;
}
printf("%d\n",num); }
return ;
}

04_最长上升子序列问题(LIS)的更多相关文章

  1. 浅谈最长上升子序列(LIS)

    一.瞎扯的内容 给一个长度为n的序列,求它的最长上升子序列(LIS) 简单的dp n=read(); ;i<=n;i++) a[i]=read(); ;i<=n;i++) ;j<i; ...

  2. 最长递增子序列(LIS)(转)

    最长递增子序列(LIS)   本博文转自作者:Yx.Ac   文章来源:勇幸|Thinking (http://www.ahathinking.com)   --- 最长递增子序列又叫做最长上升子序列 ...

  3. DP——最长上升子序列(LIS)

    DP——最长上升子序列(LIS) 基本定义: 一个序列中最长的单调递增的子序列,字符子序列指的是字符串中不一定连续但先后顺序一致的n个字符,即可以去掉字符串中的部分字符,但不可改变其前后顺序. LIS ...

  4. [51Nod 1218] 最长递增子序列 V2 (LIS)

    传送门 Description 数组A包含N个整数.设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可 ...

  5. 最长上升子序列(LIS)nlogn模板

    参考https://www.cnblogs.com/yuelian/p/8745807.html 注意最长上升子序列用lower_bound,最长不下降子序列用upper_bound 比如123458 ...

  6. 低价购买 (动态规划,变种最长下降子序列(LIS))

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  7. 最长上升子序列(LIS)问题

    最长上升子序列(LIS)问题 此处我们只讨论严格单调递增的子序列求法. 前面O(n2)的算法我们省略掉,直接进入O(nlgn)算法. 方法一:dp + 树状数组 定义dp[i]:末尾数字是i时最长上升 ...

  8. 最长公共子序列(LCS)、最长递增子序列(LIS)、最长递增公共子序列(LICS)

    最长公共子序列(LCS) [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...

  9. 最长公共子序列(LCS)和最长递增子序列(LIS)的求解

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

随机推荐

  1. jquery选择器(原创)<四>

    前面学习了基本选择器,现在学习过滤选择器中的简单过滤选择器: 简单过滤选择器,主要根据索引值对元素进行筛选,这些过滤选择器类似于CSS的伪类选择器,他们均以冒号(:)开头,并且要与另外一个选择器一起使 ...

  2. 重构if...else...或者switch程序块

    我们在开发asp.net时,经常有使用if...else...或者是使用switch来进行多个条件判断.如下面这篇<用户控件(UserControl) 使用事件 Ver2>http://w ...

  3. SQL索引学习-索引结构

    前一阵无意中和同事讨论过一个SQL相关的题(通过一个小问题来学习SQL关联查询),很惭愧一个非常简单的问题由于种种原因居然没有回答正确,数据库知识方面我算不上技术好,谈起SQL知识的学习我得益于200 ...

  4. ActiveReports 报表应用教程 (4)---分栏报表

    在 ActiveReports 中可以实现分栏报表布局样式,可以设置横向分栏.纵向分栏,同时进行分栏和分组设置,统计分栏分组的小计.合计等.在商业报表系统中常见的分栏报表有商品标签.员工工卡.条码打印 ...

  5. idea中maven项目xml资源文件无法读取

    解决方法:编辑pom.xml文件 添加如下标签 <build> <resources> <resource> <directory>src/main/j ...

  6. PHP imagecopyresampled 参数图示

  7. javascript的封装实例

    StringBuffer方法的js自定义封装: <!doctype html><html lang="en"> <head> <meta ...

  8. jquery实现页面控件拖动效果js代码

    ;(function($) { var DragPanelId = "divContext"; var _idiffx = 0; var _idiffy = 0; var _Div ...

  9. android sdk无法更新或者更新缓慢的解决方案

    win7安装android sdk老出 Fetching https://dl-ssl.google.com/android/repository/addon .这是android sdk不能连接到谷 ...

  10. Step by step configuration of Outgoing Emails from SharePoint to Microsoft Online

    First of all your SharePoint server should be added to Microsoft online safe sender list, so that Sh ...