//假设硬件平台是intel x86(little endian)    

 typedef unsigned int uint32_t;
void inet_ntoa(uint32_t in)
{
char b[];
register char *p;
p = (char *)∈
#define UC(b) (((int)b)&0xff)
sprintf(b, "%d.%d.%d.%d/n", UC(p[]), UC(p[]), UC(p[]), UC(p[]));
printf(b);
}
int main()
{
inet_ntoa(0x12345678);
inet_ntoa(0x87654321);
}

有点难度的一道题目,其实理解的也很简单。

位域(Bit-fields)分析

位域是c++和c里面都有的一个概念,但是位域有一点要注意的有很多问题我们一样样的看:

大端和小端字节序

这个很简单,就是起始点该怎么确定。
先看一个程序:

     union {
struct
{
unsigned char a1:;
unsigned char a2:;
unsigned char a3:;
}x;
unsigned char b;
}d;
int main(int argc, char* argv[])
{
d.b = ;
return ;
}

那么x的a1,a2,a3该怎么分配值,100的二进制是:0110 0100,那么a1到a3是不是就是依次取值恩?
不是!
我们先看看100分配位的低端是左边的0还是右边的0?很明显是右边的0,那么我们再看a1到a3的分配是从低端到高端的
那么,对应的应该是
<<<<<<--内存增大
a3   a2  a1
011  001 00

内存增大之所以这么写是因为,011是在高位!
而不是通常认为的的:
a1   a2  a3
011  001 00

还有一个情况多见就是一个二进制的数字转化为点分十进制数值,如何进行,这里涉及到大端还是小端的问题,上面没有涉及,主要是因为上面是一个字节,没有这个问题,多个字节就有大端和小端的问题了,或许我们应该记住这一点就是,在我们的计算机上面,大端和小端都是以字节为准的,当然严格来说更应该以位为准不是吗?具体可以参考维基百科上面的一篇文章,他给出了一个以位为准的大小端序的图:

http://en.wikipedia.org/wiki/Endianess

下面研究字节为单位的大小端序,继续看代码吧,如下:

     int main(int argc, char* argv[])
{
int a = 0x12345678;
char *p = (char *)&a;
char str[];
sprintf(str,"%d.%d.%d.%d", p[], p[], p[], p[]);
printf(str);
return ;
}

这个程序假设是小端字节序,那么结果是什么?
我们看看应该怎么放置呢?
每个字节8位,0x12345678分成4个字节,就是从高位字节到低位字节:12,34,56,78,那么这里该怎么放?如下:
---->>>>>>内存增大
78 56 34 12

因为这个是小端,那么小内存对应低位字节,就是上面的结构。

接下来的问题又有点迷糊了,就是p怎么指向,是不是指向0x12345678的开头--12处?不是!12是我们所谓的开头,但是不是内存

的开始处,我们看看内存的分布,我们如果了解p[0]到p[1]的操作是&p[0]+1,就知道了,p[1]地址比p[0]地址大,也就是说p的地址

也是随内存递增的!

12 ^ p[3]
    |
34 | p[2]
    |
56 | p[1]
    |
78 | p[0]
内存随着箭头增大!同时小端存储也是低位到高位在内存中的增加!
这样我们知道了内存怎么分布了

那么:

    sprintf(str,"%d.%d.%d.%d", p[], p[], p[], p[]);

str就是这个结果了:
120.86.52.18

那么反过来呢?

     int main(int argc, char* argv[])
{
int a = 0x87654321;
char *p = (char *)&a;
char str[];
sprintf(str,"%d.%d.%d.%d", p[], p[], p[], p[]);
printf(str);
return ;
}

依旧是小端,8位是一个字节那么就是这样的啦:

87 ^ p[3]
     |
65 | p[2]
    |
43 | p[1]
    |
21 | p[0]

结果是:
33.67.101.-121
为什么是负的?因为系统默认的char是有符号的,本来是0x87也就是135,大于127因此就减去256得到-121
那么要正的该怎么的弄?
如下就是了:

     int main(int argc, char* argv[])
{
int a = 0x87654321;
unsigned char *p = (unsigned char *)&a;
char str[];
sprintf(str,"%d.%d.%d.%d", p[], p[], p[], p[]);
printf(str);
return ;
}

用无符号的!
结果:
33.67.101.135

位域的符号(正负)

看完大端和小端以后,再看看位域的取值的问题,上面我们谈到了一些,首先就是位域是按照位来取值的跟我们的int是32位char是8

位一样,很简单,但是,要注意一点就是位域也有正负,指有符号属性的,就是最高位表示的,也会涉及到补码这个一般被认为非常

恶心的东西,看看程序吧:

     #include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char** argv)
{
union
{
struct
{
unsigned char a:;
unsigned char b:;
unsigned char c:;
}d;
unsigned char e;
} f;
f.e = ;
printf("%d/n",f.d.a);
return ;
}

<小端>
那么输出是什么?
换一下:

     #include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char** argv)
{
union
{
struct
{
char a:;
char b:;
char c:;
}d;
char e;
} f;
f.e = ;
printf("%d/n",f.d.a);
return ;
}

输出又是什么?

小端的话,那么,再d.a上面分得1,而这个是无符号的char,那么前者输出是1,没有问题,第二个输出是-1,哈哈。
为什么?
第二个是无符号的,就一个位分得1,那么就是最高位分得1,就是负数,负数用的补码,实际的值是取反加1,就是0+1=1,再取符

号负数,就是-1.

整型提升

最后的打印是用的%d,那么就是对应的int的打印,这里的位域肯定要提升,这里有一点,不管是提升到有符号还是无符号,都是自

己的符号位来补充,而不改变值的大小(这里说的不改变值大小是用相同的符号属性来读取),负数前面都补充1,正数都是用0来补充

,而且也只有这样才能保证值不变,比如,char提升到int就是前面补充24个char的最高位,比如:

     char c = 0xf0;
int p = c;
printf("%d %d/n",c,p);

输出:-16 -16
p实际上就是0xfffffff0,是负数因此就是取反加1得到
c是一个负数那么转化到x的时候就是最高位都用1来代替,得到的数不会改变值大小的。
再看:

     char c = 0xf0;
unsigned int x = c;
printf("%u/n",x);

得到的结果是4294967280,也就是0xfffffff0,记住,无符号用%u来打印。

地址不可取

最后说的一点就是位域是一个字节单元里面的一段,是没有地址的!

 struct BitField
{
unsigned char a:; //最低位;
unsigned char b:;
unsigned char c:; //最高位;
};
union Union
{
struct BitField bf;
unsigned int n;
};
union Union ubf;
ubf.n = ; //初始化;
ubf.bf.a = ; //二进制为: 000
ubf.bf.b = ; //二进制为: 000
ubf.bf.c = ; //二进制为: 001
printf("ubf.bf.n = %u\n", ubf.n);
 #include <iostream>
#include <memory.h>
using namespace std;
struct A
{
int a:;
int b:;
};
int main(void)
{
char str[] = "0134324324afsadfsdlfjlsdjfl";
struct A d;
memcpy(&d, str, sizeof(A));
cout << d.a << endl;
cout << d.b << endl;
return ;
}

在32位x86机器上输出:

高位 00110100 00110011   00110001    00110000 低位
'4' '3' '1' '0'
其中d.a和d.b占用d低位一个字节(00110000),d.a : 10000, d.b :

解析:在默认情况下,为了方便对结构体内元素的访问和管理,当结构体内的元素长 度都小于处理器的位数的时候,便以结构体里面最长的元素为对其单位,即结构体的长度一定是最长的数据元素的整数倍;如果有结构体内存长度大于处理器位数的 元素,那么就以处理器的位数为对齐单元。由于是32位处理器,而且结构体中a和b元素类型均为int(也是4个字节),所以结构体的A占用内存为4个字 节。

上例程序中定义了位域结构A,两个个位域为a(占用5位),b(占用3位),所以a和b总共占用了结构A一个字节(低位的一个字节)。

当程序运行到14行时,d内存分配情况:

 高位 00110100 00110011   00110001    00110000 低位
'4' '3' '1' '0'
其中d.a和d.b占用d低位一个字节(00110000),d.a : 10000, d.b : 001

d.a内存中二进制表示为10000,由于d.a为有符号的整型变量,输出时要对符号位进行扩展,所以结果为-16(二进制为11111111111111111111111111110000)

d.b内存中二进制表示为001,由于d.b为有符号的整型变量,输出时要对符号位进行扩展,所以结果为1(二进制为00000000000000000000000000000001)

 #include "stdio.h"

 void main(int argn ,char *argv)
{
struct test {
unsigned a:;
unsigned b:;
unsigned c:;
unsigned :;//this two bytes can't use
unsigned d:;
}data,*pData;
data.a=0x177;
data.b=0x111;
data.c=0x7;
data.d=0x8; pData=&data;
printf("data.a=%x data.b= %x data.c=%x data.d=%xn",pData->a,pData->b,pData->c,pData->d);//位域可以使用指针 printf("sizeof(data)=%dn",sizeof(data)); //4 bytes ,最常用的情况 struct testLen{
char a:;
char b:;
char c:;
char d:;
char e:;
}len; printf("sizeof(len)=%dn",sizeof(len)); //5bytes 规则2 struct testLen1{
char a:;
char b:;
char d:;
char c:;
char e:;
}len1;
printf("sizeof(len1) =%dn",sizeof(len1)); //3bytes 规则1 struct testLen2{
char a:;
char :;
char b:;
long d:; //4bytes
char e:;
}len2;
printf("sizeof(len2)=%dn",sizeof(len2)); //12 规则3,4,5,总长为4的整数倍,2+3 占1byte,b占1bye 由于与long对其,2+3+7 占4字节,后面 d 与 e进行了优化 占一个4字节 struct testLen3{
char a:;
char :;
char b:;
long d:;
char e:;
}len3;
printf("sizeof(len3)=%dn",sizeof(len3));//12 规则3,4,5,总长为4的整数倍,2+3 占1byte,b占1bye 由于与long对其,2+3+7 占4字节,后面 d占一个4字节,为了保证与long对其e独占一个4字节
}

C/C++ 位域的更多相关文章

  1. C语言中struct位域的定义和使用

    位域的定义和使用 有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位.例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可.为了节省存储空间,并使处理简便,C语言又 ...

  2. C语言位域

    转载自 http://tonybai.com/2013/05/21/talk-about-bitfield-in-c-again/ 再谈C语言位域 五 21 bigwhite技术志 bitfield, ...

  3. C/C++: C++位域和内存对齐问题

    1. 位域: 1. 在C中,位域可以写成这样(注:位域的数据类型一律用无符号的,纪律性). struct bitmap { unsigned a : ; unsigned b : ; unsigned ...

  4. 全面总结sizeof的用法(定义、语法、指针变量、数组、结构体、类、联合体、位域位段)

    一.前言 编译环境是vs2010(32位). <span style="font-size:18px;">#include<iostream> #inclu ...

  5. C 结构体位域

    位域 : 有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位.例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可.为了节省存储空间,并使处理简便,C语言又提供了一 ...

  6. 关于C语言中的位域

    有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位.例如在存放一个开关量时,只有0和1 两种状态,用一位二进位即可.为了节省存储空间,并使处理简便,C语言提供了一种数据结构,称 ...

  7. C语言中结构体的位域(bit-fields)

    转自:http://blog.sina.com.cn/s/blog_6240b5980100tcba.html 有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位.例如在存放一 ...

  8. 位域 unsigned int a : 4;

    位域 有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位.例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可.为了节省存储空间,并使处理简便,C语言又提供了一种数 ...

  9. 不可或缺 Windows Native (9) - C 语言: 动态分配内存,链表,位域

    [源码下载] 不可或缺 Windows Native (9) - C 语言: 动态分配内存,链表,位域 作者:webabcd 介绍不可或缺 Windows Native 之 C 语言 动态分配内存 链 ...

随机推荐

  1. C#初入串口通信(串行通信)总结

    使用WinFrom来实现: 首先要知道串口通信协议以及原理 原理大概提一下:要自己翻阅看.(http://book.51cto.com/art/200911/162532.htm或者http://hi ...

  2. JAVa中进制之间的转化方法

    public class Code { public static void main(String[] args) throws Exception{ // TODO Auto-generated ...

  3. Hibernate框架之注解的配置

    在hibernate中,通常配置对象关系映射关系有两种,一种是基于xml的方式,另一种是基于annotation的注解方式,熟话说,萝卜青菜,可有所爱,每个人都有自己喜欢的配置方式,我在试了这两种方式 ...

  4. 【iOS】Quartz2D基本图形

    一.画线段 - (void)drawRect:(CGRect)rect { // Drawing code // 1.获得图形上下文 CGContextRef ctx = UIGraphicsGetC ...

  5. .NET AES加解密(128位)

    AES加密(128位): /// <summary> /// 有密码的AES加密 /// </summary> internal static string Encrypt(s ...

  6. JQuery EasyUI Tree

    Tree 数据转换 所有节点都包含以下属性: id:节点id,这个很重要到加载远程服务器数据 which is important to load remote data text: 显示的节点文本 ...

  7. Atitit. Atiposter 发帖机 新特性 poster new feature   v7 q39

    Atitit. Atiposter 发帖机 新特性 poster new feature   v7 q39 V1  初步实现sina csdn cnblogs V2  实现qzone sohu 的发帖 ...

  8. 浅谈PopupWindow弹出菜单

    实现将一个View显示在某一位置,而且是浮于当前窗口 首先要有一个要显示的view的布局,可以是任意View,包括ViewGroup <?xml version="1.0" ...

  9. C语言中do...while(0)用法小结

    在linux内核代码中,经常看到do...while(0)的宏,do...while(0)有很多作用,下面举出几个: 本文地址:http://www.cnblogs.com/archimedes/p/ ...

  10. iOS自定义AlertView 与 ActionSheet 遮罩提示+弹出动画

    产品大人总是能够想到很多让人欣慰的点子,基本所有能提示的地方都要很多文案啊图片之类 由此封装了一个半透明黑色遮罩的alert类(假装有图.jpg) 代码略糙,just share (逃 下载链接