写题解之前首先要感谢妹子。

  比较容易的斜率DP,设sum[i]=Σb[j],sum_[i]=Σb[j]*j,w[i]为第i个建立,前i个的代价。

  那么就可以转移了。

/**************************************************************
Problem: 3437
User: BLADEVIL
Language: C++
Result: Accepted
Time:3404 ms
Memory:39872 kb
****************************************************************/ //By BLADEVIL
#include <cstdio>
#define maxn 1000010
#define LL long long using namespace std; LL n;
LL a[maxn],sum[maxn],sum_[maxn];
LL que[maxn];
LL w[maxn]; LL get(LL i) {
return (w[i]+sum_[i]);
} int main() {
scanf("%lld",&n);
for (LL i=;i<=n;i++) scanf("%lld",&a[i]);
for (LL i=;i<=n;i++) scanf("%lld",&sum[i]);
for (LL i=;i<=n;i++) sum_[i]=i*sum[i];
for (LL i=;i<=n;i++) sum[i]+=sum[i-],sum_[i]+=sum_[i-];
LL h(),t();
for (LL i=;i<=n;i++) {
while ((t-h>)&&((sum[que[h]]-sum[que[h+]])*i<=(w[que[h]]+sum_[que[h]]-w[que[h+]]-sum_[que[h+]]))) h++;
w[i]=w[que[h]]+(sum[i]-sum[que[h]])*i-(sum_[i]-sum_[que[h]])+a[i];
//w[i]=w[que[h]]+sum_[que[h]]-i*sum[que[h]]+i*sum[i]+a[i]-sum_[i];
while ((t>h)&&((get(que[t-])-get(i))*(sum[que[t-]]-sum[que[t]])<=(get(que[t-])-get(que[t]))*(sum[que[t-]]-sum[i]))) t--;
/*
while ((t-h>0)&&(
(w[que[t-1]]+sum_[que[t-1]]-w[i]-sum_[i])*(sum[que[t-1]]-sum[que[t]])<=
(w[que[t-1]]+sum_[que[t-1]]-w[que[t]]-sum_[que[t]])*(sum[que[t-1]]-sum[i]))
) t--;
*/
que[++t]=i;
}
printf("%lld\n",w[n]);
return ;
}

bzoj 3437 斜率优化DP的更多相关文章

  1. bzoj 1010 斜率优化DP

    我的第二道斜率DP. 收获: 1.假设两个位置:p<q<i,然后让某一位置优,看其满足什么性质,所谓斜率优化就是满足: (g[q]-g[p])/(f[q]-f[p])  op h[i] 要 ...

  2. bzoj 1096 斜率优化DP

    首先比较容易的看出来是DP,w[i]为前i个工厂的最小费用,那么w[i]=min(w[j-1]+cost(j,i))+c[i],但是这样是不work的,复杂度上明显过不去,这样我们考虑优化DP. 设A ...

  3. bzoj 1942 斜率优化DP

    首先我们贪心的考虑,对于某一天来说,我们只有3中策略,第一种为不做任何行动,这时的答案与前一天相同,第二种为将自己的钱全部换成a,b货币,因为如果换a,b货币,代表在之后的某一天卖出去后会赚钱,那么当 ...

  4. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  5. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

  6. BZOJ 1010: 玩具装箱toy (斜率优化dp)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  7. BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...

  8. BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...

  9. 【BZOJ】1911: [Apio2010]特别行动队(斜率优化dp)

    题目 传送门:QWQ 分析 用$ dp[i] $ 表示前 i 个人组成的战斗力之和 然后显然$ dp[i]=Max (  dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum ...

随机推荐

  1. 仙人掌(cactus)

    仙人掌(cactus) Time Limit:1000ms Memory Limit:64MB 题目描述 LYK 在冲刺清华集训(THUSC) !于是它开始研究仙人掌,它想来和你一起分享它最近研究的 ...

  2. EZ GUI Button和Checkbox创建

    第一次接触EZ GUI,记录学习过程 准备工作 导入资源 导入 EZ GUI 1.0795.unitypackage 和 SpriteManager2 v1.92.unitypackage EZGUI ...

  3. AS3声音录音

    MicRecorder, a tiny microphone library http://www.bytearray.org/?p=1858

  4. IO流的练习4 —— 键盘录入学生成绩信息,进行排序后存入文本中

    需求: 键盘录入5个学生信息(姓名,语文成绩,数学成绩,英语成绩),按照总分从高到低存入文本文件 分析: A:创建学生类 B:创建集合对象 TreeSet<Student> C:键盘录入学 ...

  5. 转:webRTC的前世今生

    https://blog.coding.net/blog/getting-started-with-webrtc

  6. YII获取刚插入数据的id主键

    单条数据时model->attributes['id']; 循环插入时使用 Yii::app()->db->getLastInsertID() 获取 循环插入时需要每次插入后重置 m ...

  7. Ubuntu 下安装 apt-get install npm 失败的解决方案

    Ubuntu 下安装 apt-get  install npm 失败的解决方案: sudo apt-get remove nodejs npm ## remove existing nodejs an ...

  8. usb驱动开发10之usb_device_match

    在第五节我们说过会专门分析函数usb_device_match,以体现模型的重要性.同时,我们还是要守信用的. 再贴一遍代码,看代码就要不厌其烦. static int usb_device_matc ...

  9. nodejs 针对 mysql 设计的原型库,支持事务/共享多次/单次查询

    //通过this访问内置流程对象, 在每个流程中都能使用 //this.conn => mysql-connection //this.results => 整个流程数已经返回的值 //t ...

  10. unity触发器和碰撞器

    Unity中检测碰撞的方法有两种,一种是触发器一种是碰撞器,现在我来解释一下两种的区别. 触发器:有三种方法,分别是OnTriggerEnter,OnTriggerStay,OnTriggerExit ...