H - The equation

Time Limit:250MS     Memory Limit:4096KB     64bit IO Format:%I64d & %I64u

Description

There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer roots of this equation are satisfy to the following conditions : x1<=x<=x2,   y1<=y<=y2. Integer root of this equation is a pair of integer numbers (x,y).

Input

Input contains integer numbers a,b,c,x1,x2,y1,y2 delimited by spaces and line breaks. All numbers are not greater than 108 by absolute value。

Output

Write answer to the output.

Sample Input

1 1 -3
0 4
0 4

Sample Output

4

我的思路就是首先把一个基本解求出来,然后看在x1、x2的范围内x的范围是多少,然后找到对应的y的范围,再看y的范围有多少个解是在y1、y2范围之内的,这个就是最后的答案。

当然,对于含有a=0或b=0的情况要特判一下。

附上一个很不错的网址:传送门

#include <iostream>
using namespace std;
typedef long long LL;
LL a,b,c,x1,x2,y1,y2,x,y,tmp,ans=;
LL mini = -361168601842738790LL;
LL maxi = 322337203685477580LL;
int extendedGcd(int a,int b){
if (b==){
x=;y=;
return a;
}
else{
int tmp = extendedGcd(b,a%b);
int t = x;
x=y;
y=t-a/b*y;
return tmp;
}
}
LL extendedGcd(LL a,LL b){
if (b == ){
x=;y=;
return a;
}
else{
LL TEMP = extendedGcd(b,a%b);
LL tt=x;
x=y;
y=tt-a/b*y;
return TEMP;
}
}
LL upper(LL a,LL b){
if (a<=)
return a/b;
return (a-)/b + ;
}
LL lower(LL a,LL b){
if (a>=)
return a/b;
return (a+)/b - ;
}
void update(LL L,LL R,LL wa){
if (wa<){
L=-L;R=-R;wa=-wa;
swap(L,R);
}
mini=max(mini,upper(L,wa));
maxi=min(maxi,lower(R,wa));
}
int main(){
cin >> a >> b >> c >> x1 >> x2 >> y1 >> y2;c=-c;
if (a== && b==){
if (c==) ans = (x2-x1+) * (y2-y1+);
}
else if (a== && b!=){
if (c % b==) {
tmp = c/b;
if (tmp>=y1 && tmp<=y2) ans = ;
}
}
else if (a!= && b==){
if (c % a==){
tmp = c/a;
if (tmp>=x1 && tmp<=x2) ans = ;
}
}
else{
LL d = extendedGcd(a,b);
if (c%d == ){
LL p = c/d;
update(x1-p*x,x2-p*x,b/d);
update(y1-p*y,y2-p*y,-a/d);
ans = maxi-mini+;
if (ans<) ans=;
}
}
cout << ans << endl;
}

SGU 106 The equation的更多相关文章

  1. SGU 106 The equation 扩展欧几里德

    106. The equation time limit per test: 0.25 sec. memory limit per test: 4096 KB There is an equation ...

  2. 数论 + 扩展欧几里得 - SGU 106. The equation

    The equation Problem's Link Mean: 给你7个数,a,b,c,x1,x2,y1,y2.求满足a*x+b*y=-c的解x满足x1<=x<=x2,y满足y1< ...

  3. SGU 106 The equation 扩展欧几里得好题

    扩展欧几里得的应用……见算法竞赛入门经典p.179 注意两点:1.解不等式的时候除负数变号 2.各种特殊情况的判断( a=0 && b=0 && c=0 ) ( a=0 ...

  4. SGU 106 The Equation 扩展欧几里得应用

    Sol:线性不定方程+不等式求解 证明的去搜下别人的证明就好了...数学题. #include <algorithm> #include <cstdio> #include & ...

  5. SGU 106 The equation【扩展欧几里得】

    先放一张搞笑图.. 我一直wa2,这位不认识的大神一直wa9...这样搞笑的局面持续了一个晚上...最后各wa了10发才A... 题目链接: http://acm.hust.edu.cn/vjudge ...

  6. The equation SGU - 106

    题目链接:https://codeforces.com/problemsets/acmsguru/problem/99999/106 这个题是关于EXGCD特别好的一个题目.题目大意:有一个等式ax+ ...

  7. The equation - SGU 106(扩展欧几里得)

    题目大意:有一个二元一次方程,给出系数值和x与y的取值范围,求出来总共有多少对整数解. 分析:有以下几点情况. 1,系数a=0, b=0, 当c != 0的时候结果很明显是无解,当c=0的时候x,y可 ...

  8. 扩展欧几里德 SGU 106

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=106   题意:求ax + by + c = 0在[x1, x2], [y1, y2 ...

  9. SGU 106.Index of super-prime

    时间限制:0.25s 空间限制:4M 题目大意:                 在从下标1开始素数表里,下标为素数的素数,称为超级素数(Super-prime),给出一个n(n<=10000) ...

随机推荐

  1. codevs1500 后缀排序

    题目描述 Description 天凯是MIT的新生.Prof. HandsomeG给了他一个长度为n的由小写字母构成的字符串,要求他把该字符串的n个后缀(suffix)从小到大排序. 何谓后缀?假设 ...

  2. POJ3169 Layout

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  3. Type-Length-Value编码

    Within data communication protocols, optional information may be encoded as a type-length-value or T ...

  4. hdu 2160 母猪的故事(睡前随机水一发)(斐波那契数列)

    解题思路: 一只母猪生下第二头后立马被杀掉,可以这样想即,生下第二头便被杀掉,可以看成母猪数量没变 第一天 1 第二天 2 第三天 3 :第一头生第二头后杀掉还是1头,第二头再加上第二头生下的,一共三 ...

  5. mysql 服务无法启动 服务没有报告任何错误

    问题 解决方法 1.必须保证 mysql 下不存在 data 文件夹,如果存在 data 文件夹,则先删除 mysql 下的 data 文件夹,然后初始化 mysqld --initialize 服务 ...

  6. 在.NET 环境中实现每日构建(Daily Build)--ccnet,MSBuild篇(转载)

    每日构建,对我们团队来说一个全新的概念.随着项目开发的进展,在开发过 程需要及时反馈一些BUG和功能要求的处理情况.而在这种情况下每天或隔一段时间Build一个版本,工作量还是比较大的,所以就特别有必 ...

  7. Java开源数据库管理工具

    SQuirreL SQL Client   SQuirreL SQL Client 是一个用 Java 编写的程序,它允许您查看数据库的内容.发出 SQL 命令,以及如您将看到的,执行许多其他功能.构 ...

  8. motto5

    No matter what others say,I won't forsake my priciples.

  9. PHP函数之日期时间函数date()使用详解

    date()函数是我们在php开发中常碰到并且会使用到的一个日期函数,下面我来给大家介绍date()函数的一些基本扮靓和方法,有需要了解的朋友可进入参考   日期时间函数是PHP 的核心组成部分.无需 ...

  10. 支付宝微信O2O大战,WiFi广告在夹缝中求生存

    支付宝微信O2O大战,WiFi广告在夹缝中求生存 来自工信部的数据显示,截至2013年底,中国智能手机的保有量已经达到5.8亿台.国内平均有46%的时间选择WiFi上网. 商用WiFi已经成为了移动互 ...