[codeforces 528]B. Clique Problem

试题描述

The clique problem is one of the most well-known NP-complete problems. Under some simplification it can be formulated as follows. Consider an undirected graph G. It is required to find a subset of vertices C of the maximum size such that any two of them are connected by an edge in graph G. Sounds simple, doesn't it? Nobody yet knows an algorithm that finds a solution to this problem in polynomial time of the size of the graph. However, as with many other NP-complete problems, the clique problem is easier if you consider a specific type of a graph.

Consider n distinct points on a line. Let the i-th point have the coordinate xi and weight wi. Let's form graph G, whose vertices are these points and edges connect exactly the pairs of points (i, j), such that the distance between them is not less than the sum of their weights, or more formally: |xi - xj| ≥ wi + wj.

Find the size of the maximum clique in such graph.

输入

The first line contains the integer n (1 ≤ n ≤ 200 000) — the number of points.

Each of the next n lines contains two numbers xiwi (0 ≤ xi ≤ 109, 1 ≤ wi ≤ 109) — the coordinate and the weight of a point. All xi are different.

输出

Print a single number — the number of vertexes in the maximum clique of the given graph.

输入示例


输出示例


数据规模及约定

见“输入

题解

把节点 i 转化成线段 [xi - wi, xi + wi],然后题目求的就是没有交集的最多的线段条数。贪心即可。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 200010
#define LL long long
int n, f[maxn];
struct Point {
int x, v;
Point(): x(0), v(0) {}
Point(int _, int __): x(_), v(__) {}
bool operator < (const Point& t) const { return x + v < t.x + t.v; }
} ps[maxn]; int main() {
n = read();
for(int i = 1; i <= n; i++) ps[i].x = read(), ps[i].v = read(); sort(ps + 1, ps + n + 1);
for(int i = 1; i <= n; i++) {
int x = upper_bound(ps + 1, ps + n + 1, Point(ps[i].x, -ps[i].v)) - ps - 1;
f[i] = max(f[i-1], f[x] + 1);
} printf("%d\n", f[n]); return 0;
}

[codeforces 528]B. Clique Problem的更多相关文章

  1. 【codeforces 527D】Clique Problem

    [题目链接]:http://codeforces.com/contest/527/problem/D [题意] 一维线段上有n个点 每个点有坐标和权值两个域分别为xi,wi; 任意一对点(i,j) 如 ...

  2. CodeForces - 527D Clique Problem (图,贪心)

    Description The clique problem is one of the most well-known NP-complete problems. Under some simpli ...

  3. Codeforces Round #296 (Div. 1) B - Clique Problem

    B - Clique Problem 题目大意:给你坐标轴上n个点,每个点的权值为wi,两个点之间有边当且仅当 |xi - xj| >= wi + wj, 问你两两之间都有边的最大点集的大小. ...

  4. Codeforces Round #296 (Div. 1) B. Clique Problem 贪心

    B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  5. Codeforces Round #296 (Div. 2) D. Clique Problem [ 贪心 ]

    传送门 D. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  6. CF #296 (Div. 1) B. Clique Problem 贪心(构造)

    B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  7. [codeforces 528]A. Glass Carving

    [codeforces 528]A. Glass Carving 试题描述 Leonid wants to become a glass carver (the person who creates ...

  8. codeforces.com/contest/325/problem/B

    http://codeforces.com/contest/325/problem/B B. Stadium and Games time limit per test 1 second memory ...

  9. Codeforces 442B Andrey and Problem(贪婪)

    题目链接:Codeforces 442B Andrey and Problem 题目大意:Andrey有一个问题,想要朋友们为自己出一道题,如今他有n个朋友.每一个朋友想出题目的概率为pi,可是他能够 ...

随机推荐

  1. ModernUI教程:第一个ModernUI应用(采用项目模板)

    在我们开始之前,请确保你已经为你的Visual2012或者2013安装了ModernUI for WPF的模板扩展: >>从Visual Studio 库 下载并安装VSIX扩展 > ...

  2. 第二十二课:js事件原理以及addEvent.js的详解

    再看这篇博客之前,希望你已经对js高级程序编程一书中的事件模块进行了详读,不然我只能呵呵了. document.createEventObject,在IE下创建事件对象event. elem.fire ...

  3. UIToolbar 如何调整里面的按钮位置

    可以在Bar Button Item后面填个Fixed Space Bar Button Item 或者Flexible Space Bar Button Item,然后再在后面加上下一个Bar Bu ...

  4. attempted to assign id from null one-to-one

    one-to-one在hibernate中可以用来作为两张表之间的主键关联,这也是hibernate中主键关联的一种用法,这样在一张表中的ID,在生成另外一张表的同时回自动插入到相应的ID字段中去,相 ...

  5. 自定义EL

    1.建一个类 package com.zh.util; public class GetInFo { public static String eval(String infix){ //注意的是这里 ...

  6. startsWith

    if (!String.prototype.startsWith) { Object.defineProperty(String.prototype, 'startsWith', { enumerab ...

  7. Oracle 调度程序(scheduler)摘自一位大神

    在11g中,Oracle提供了一个新建的Scheduler特性,帮助将作业实现自动化.它还可以帮助你控制资源的利用与并可以将数据库中的作业按优先顺序执行.传统的dbms_jobs的一个限制是它只能调度 ...

  8. PLSQL导入Excel表中数据

     PL/SQL 和SQL Sever导入excel数据的原理类似,就是找到一个导入excel数据的功能项,按照步骤走就是了.下面是一个些细节过程,希望对像我这样的菜鸟有帮助.  www.2cto.co ...

  9. POJ2299 Ultra-QuickSort

    Description In this problem, you have to analyze a particular sorting algorithm. The algorithm proce ...

  10. 全栈必备Linux 基础

    Linux 几乎无处不在,不论是服务器构建,还是客户端开发,操作系统的基础技能对全栈来说都是必备的.系统的选择Linux发行版本可以大体分为两类,一类是商业公司维护的发行版本,一类是社区组织维护的发行 ...