算法复杂度及渐进符号

一、算法复杂度

首先每个程序运行过程中,都要占用一定的计算机资源,比如内存,磁盘等,这些是空间,计算过程中需要判断,循环执行某些逻辑,周而反复,这些是时间。

那么一个算法有多好,多快,怎么衡量一个算法的好坏?所以,计算机科学在算法分析过程中,提出了算法复杂度理论,这套理论可以量化算法的效率,以此作为标准,方便我们能衡量到底选择哪一种算法。

复杂度有两个维度:时间和空间。

我们说,一个实现了某算法的程序:

  1. 如果计算的速度越快,那么这个算法时间复杂度越低。
  2. 如果占用的计算资源越少,那么空间复杂度越低。

我们要选择复杂度低的算法,衡量好空间和时间的消耗,选出适合特定场景的算法。

这两个复杂度维度的量化过程都是一样的,所以我们这里主要介绍时间复杂度。

二、算法规模

我们要计算公式1 + 2 + 3 + ... + 100,那么按照最直观的算法来写:

package main

import "fmt"

func sum(n int) int {
total := 0
// 从1加到N, 1+2+3+4+5+..+N
for i := 1; i <= n; i++ {
total = total + i
}
return total
} func main() {
fmt.Println(sum(100))
}

n = 10时就等于我们要计算的公式。这个算法要循环n-1次,当n很小时,计算很快,但当n无限大的时候,计算很慢。

所以,算法衡量要衡量的是在不同问题规模 n下,算法的速度。

在这里,因为要循环计算n-1次,而当n无限大时,常数项基本忽略不计,所以这个算法的时间复杂度,我们用O(n)来表示。

我们有另外一种计算方式:

func sum2(n int) int {
total := ((1 + n) * n) / 2
return total
}

这次算法只需执行1次,所以这个算法的时间复杂度是O(1)。可以看出,时间复杂度为O(1)的算法优于复杂度为O(n)的算法。

当然,还有指数级别的比如之前的汉诺塔算法,对数级别的,阶乘级别的复杂度,如O(2^n)O(n!)O(logn)等。

算法的优先级排列如下,一般排在上面的要优于排在下面的:

  1. 常数复杂度:O(1)
  2. 对数复杂度:O(logn)
  3. 一次方复杂度:O(n)
  4. 一次方乘对数复杂度:O(nlogn)
  5. 乘方复杂度:O(n^2)O(n^3)
  6. 指数复杂度:O(2^n)
  7. 阶乘复杂度:O(n!)
  8. 无限大指数复杂度:O(n^n)

三、渐进符号

如何量化一个复杂度,到底有多复杂,计算机科学抽象出了几个复杂度渐进符号。

渐进符号如下:

OοΘΩω

分别读作:Omicron(大欧),omicron(小欧),Theta(西塔),Omega(大欧米伽),omega(小欧米伽)。

3.1. 渐进符号:Θ

假设算法A的运行时间表达式:

T(n)= 5 * n^3 + 4 * n^2

如果问题规模n足够大,那么低次方的项将无足轻重,运行时间主要取决于高次方的第一项:5*n^3

随着n的增大,第一项的5*n^3中的常数5也无足轻重了。

所以算法A的运行时间T(n)约等于n^3。记为:

T(n) = Θ(n^3)

Θ的数学含义:

f(n)g(n)是定义域n为自然数集合的函数,两个函数同阶,也就是当n无穷大时,f(n)/g(n)等于某个大于0的常数c

也可以说,存在正常量c1c2n0,对于所有n >= n0,有0 <= c1 * g(n) <= f(n) <= c2 * g(n)

那么可以记f(n) = Θ(g(n))g(n)f(n)的渐进紧确界。

3.2. 渐进符号:O

O的数学含义:

f(n)g(n)是定义域n为自然数集合的函数,f(n)函数的阶不高于g(n)函数的阶。

也可以说,存在正常量cn0,对于所有n >= n0,有0 <= f(n) <= c * g(n)

那么可以记f(n) = O(g(n))g(n)f(n)的渐进上界。

3.3. 渐进符号:Ω

Ω的数学含义:

f(n)g(n)是定义域n为自然数集合的函数,f(n)函数的阶不低于g(n)函数的阶。

也可以说,存在正常量cn0,对于所有n >= n0,有0 <= cg(n) <= f(n)

那么可以记f(n) = Ω(g(n))g(n)f(n)的渐进下界。

3.4. 渐进分析

上面的定义很复杂,我们可以来看图:

n值超过某个值时,f(n)g(n)两条线夹在中间,那么g(n)就是渐进紧确界。

如果g(n)的线在上面,就是渐进上界。

如果g(n)线在下面,就是渐进下界。

我们一般会评估一个算法的渐进上界O,因为这表示算法的最坏情况,这个上界可以十分不准确,但我们一般会评估得足够准确,比如:

设 f(n) = 5 * n^3 + 4 * n^2,我们要求渐进上界。

那么:

f(n) = O(n^3),g(n) = n^3
f(n) = O(n^4),g(n) = n^4

两个g(n)都是上界,因为令c = 5时都存在:0 <= f(n) <= c * g(n))

我们会取乘方更小的那个,因为这个界更逼近f(n)本身,所以我们一般说f(n) = O(n^3),算法的复杂度为大欧n的三次方,表示最坏情况。

同理,渐进下界Ω刚好与渐进上界相反,表示最好情况。比如还是这个假设:

设 f(n) = 5 * n^3 + 4 * n^2,我们要求渐进下界。

那么:

f(n) = Ω(n^3),g(n) = n^3
f(n) = Ω(n^2),g(n) = n^2

两个g(n)都是下界,因为令c =5时都存在:0 <= cg(n) <= f(n)

我们准确评估的时候,要取乘方更大的那个,因为这个界更逼近f(n)本身,所以我们一般说f(n) = Ω(n^3),算法的复杂度为大欧米伽n的三次方,表示最好情况。

我们发现当f(n) = Ω(n^3) = O(n^3)时,其实f(n) = Θ(n)

另外两个渐进符号οω一般很少使用,指不那么紧密的上下界。

也就是评估的时候,不那么准确去评估,在评估最坏情况的时候使劲地往坏了评估,评估最好情况则使劲往好的评估,但是它不能刚刚好,比如上面的结果:

f(n) = O(n^3),g(n) = n^3
f(n) = O(n^4),g(n) = n^4
f(n) = Ω(n^3),g(n) = n^3
f(n) = Ω(n^2),g(n) = n^2

我们可以说:

f(n) = ο(n^4),g(n) = n^4  往高阶的评估,不能同阶
f(n) = ω(n^2),g(n) = n^2 往低阶的评估,不能同阶

四、总结

我们一般用O渐进上界来评估一个算法的时间复杂度,表示逼近的最坏情况。其他渐进符合基本不怎么使用。

系列文章入口

我是陈星星,欢迎阅读我亲自写的 数据结构和算法(Golang实现),文章首发于 阅读更友好的GitBook

数据结构和算法(Golang实现)(9)基础知识-算法复杂度及渐进符号的更多相关文章

  1. 数据结构和算法(Golang实现)(10)基础知识-算法复杂度主方法

    算法复杂度主方法 有时候,我们要评估一个算法的复杂度,但是算法被分散为几个递归的子问题,这样评估起来很难,有一个数学公式可以很快地评估出来. 一.复杂度主方法 主方法,也可以叫主定理.对于那些用分治法 ...

  2. 算法导论 - 基础知识 - 算法基础(插入排序&归并排序)

    在<算法导论>一书中,插入排序作为一个例子是第一个出现在该书中的算法. 插入排序: 对于少量元素的排序,它是一个有效的算法. 插入排序的工作方式像许多人排序一手扑克牌.开始时,我们手中牌为 ...

  3. 数据结构和算法(Golang实现)(8.1)基础知识-前言

    基础知识 学习数据结构和算法.我们要知道一些基础的知识. 一.什么是算法 算法(英文algorithm)这个词在中文里面博大精深,表示算账的方法,也可以表示运筹帷幄的计谋等.在计算机科技里,它表示什么 ...

  4. 数据结构和算法(Golang实现)(8.2)基础知识-分治法和递归

    分治法和递归 在计算机科学中,分治法是一种很重要的算法. 字面上的解释是分而治之,就是把一个复杂的问题分成两个或更多的相同或相似的子问题. 直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合 ...

  5. 数据结构和算法(Golang实现)(25)排序算法-快速排序

    快速排序 快速排序是一种分治策略的排序算法,是由英国计算机科学家Tony Hoare发明的, 该算法被发布在1961年的Communications of the ACM 国际计算机学会月刊. 注:A ...

  6. 数据结构和算法(Golang实现)(1)简单入门Golang-前言

    数据结构和算法在计算机科学里,有非常重要的地位.此系列文章尝试使用 Golang 编程语言来实现各种数据结构和算法,并且适当进行算法分析. 我们会先简单学习一下Golang,然后进入计算机程序世界的第 ...

  7. 数据结构和算法(Golang实现)(2)简单入门Golang-包、变量和函数

    包.变量和函数 一.举个例子 现在我们来建立一个完整的程序main.go: // Golang程序入口的包名必须为 main package main // import "golang&q ...

  8. 数据结构和算法(Golang实现)(3)简单入门Golang-流程控制语句

    流程控制语句 计算机编程语言中,流程控制语句很重要,可以让机器知道什么时候做什么事,做几次.主要有条件和循环语句. Golang只有一种循环:for,只有一种判断:if,还有一种特殊的switch条件 ...

  9. 数据结构和算法(Golang实现)(4)简单入门Golang-结构体和方法

    结构体和方法 一.值,指针和引用 我们现在有一段程序: package main import "fmt" func main() { // a,b 是一个值 a := 5 b : ...

随机推荐

  1. c# 对SOAP返回XML字符串的解析方法

    <SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"> <SOAP:Head ...

  2. 树莓派4B踩坑指南 - (13)用samba建立家庭局域网共享中心

    树莓派在家中至少三个作用:家庭资源共享中心.无线打印服务器.下载服务器. 家庭资源共享中心用samba实现家庭局域网共享,树莓派4B的话可以接2个3.0的移动硬盘. 实测速度不快,Win读2Mb/s写 ...

  3. vnpy源码阅读学习(7):串在一起

    串在一起 我们已经分析了UI.MainEngine.EventEngine.然后他们几个是如何发挥作用的呢?我总结了一张图: 我们来具体的看看UI部分是如何跟EventEngine穿插起来的 \exa ...

  4. [模拟]Codeforces Circle of Students

    Circle of Students time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  5. cin.getline()的用法和坑

    cin.getline()的用法和坑 cin.getline大致原型:**istream& getline (char* s, streamsize n, char delim='\n');* ...

  6. TensorFlow 基本变量定义,基本操作,矩阵基本操作

    使用 TensorFlow 进行基本操作的实例,这个实例主要是使用 TensorFlow 进行了加法运算. 包括使用 constant 常量进行加法运算和使用 placeholder 进行变量加法运算 ...

  7. AI的博弈论,一份插图教程

    介绍 我想先问一个简单的问题--你能认出下图中的两个人吗? 我肯定你说对了.对于我们这些早期数学发烧友来说,电影<美丽心灵>(A Beautiful Mind)已经深深地印在了我们的记忆中 ...

  8. 五大经典卷积神经网络介绍:LeNet / AlexNet / GoogLeNet / VGGNet/ ResNet

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! LeNet / AlexNet / GoogLeNet / VGG ...

  9. 使用 PyTorch 进行 风格迁移(Neural-Transfer)

    1.简介 本教程主要讲解如何实现由 Leon A. Gatys,Alexander S. Ecker和Matthias Bethge提出的Neural-Style 算法.Neural-Style 或者 ...

  10. CentOS7配置环境变量

    执行命令env查看当前环境变量: [duanyongchun@192 3DUnetCNN]$ env 例如扩展环境变量为/tmp/bin: PATH=$PATH:/tmp/bin 查看特定环境变量命令 ...