调用 start_kernel
步骤 1
关闭中断、进入 SVC 模式
ENTRY(stext)
THUMB( adr r9, BSYM(1f) ) @ Kernel is always entered in ARM.
THUMB( bx r9 ) @ If this is a Thumb-2 kernel,
THUMB( .thumb ) @ switch to Thumb now.
THUMB(1: )
setmode PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9 @ 关中断、进入 SVC 模式
步骤 2
查找指定处理器类型的 proc_info
mrc p15, 0, r9, c0, c0 @ 取出处理器 ID 放入寄存器 r9 中
bl __lookup_processor_type @ 查找处理器类型 r5=procinfo r9=cpuid
|
|-->/* 找到匹配 proc_info 则返回,否则将 r5 清零 */
| __CPUINIT
| __lookup_processor_type:
| adr r3, __lookup_processor_type_data
| |
| |-->.align 2
| | .type __lookup_processor_type_data, %object
| | __lookup_processor_type_data:
| | .long .
| | .long __proc_info_begin
| | .long __proc_info_end
| | .size __lookup_processor_type_data, . - __lookup_processor_type_data
| ldmia r3, {r4 - r6} @ r4=当前数据地址、r5=处理器数据起始地址、r6=结束地址
| sub r3, r3, r4 @ 计算出运行地址和链接地址间的偏移
| add r5, r5, r3 @ 修正 r5
| add r6, r6, r3 @ 修正 r6
| 1: ldmia r5, {r3, r4}
| and r4, r4, r9
| teq r3, r4
| beq 2f @ 如果相等则匹配成功
| add r5, r5, #PROC_INFO_SZ @ 开始指向下一个处理器数据
| cmp r5, r6
| blo 1b @ 如果还有数据则循环查找
| mov r5, #0 @ 未找到时将 r5 清零
| 2: mov pc, lr @ 返回
| ENDPROC(__lookup_processor_type)
movs r10, r5 @ 使用 r5 改变标志位
THUMB( it eq )
beq __error_p @ 如果相等则没找到
#ifndef CONFIG_XIP_KERNEL
adr r3, 2f @ r3=运行地址
ldmia r3, {r4, r8} @ r4=链接地址(虚拟地址)、r8=页偏移
sub r4, r3, r4 @ 运行地址与链接地址间的差值
/*
* 内核被解压到 物理地址+text_offset 处,即 0x40008000,也是当前的运行地址
* 而内核在编译时被链接到 page_offset+text_offset 处,即 0xc0008000
* 因此 r4=r3-r4 记录的是内核实际存放的物理地址和运行时的虚拟地址间的偏移
* 即 r4=phys-page_offset
* 所以 r8 = r4+r8 = phys-page_offset+page_offset = phys,即物理地址的起始地址
*/
add r8, r8, r4 @ 物理地址的起始地址
#else
ldr r8, =PHYS_OFFSET @ always constant in this case
#endif
#ifndef CONFIG_XIP_KERNEL
2: .long .
.long PAGE_OFFSET
#endif
步骤 3
检查 bootloader 传递的启动参数是否有效
/*
* r1 = machine no, r2 = atags or dtb,
* r8 = phys_offset, r9 = cpuid, r10 = procinfo
*/
bl __vet_atags
|
+-->/* Returns:
| * r2 either valid atags pointer, valid dtb pointer, or zero
| * r5, r6 corrupted
| */
| __vet_atags:
| tst r2, #0x3 @ 判断 atags 是否 4 字节对齐
| bne 1f
|
| ldr r5, [r2, #0]
| #ifdef CONFIG_OF_FLATTREE @ 配置此项时支持设备树
| ldr r6, =OF_DT_MAGIC @ 判断是否是 DTB 数据
| cmp r5, r6
| beq 2f
| #endif
| cmp r5, #ATAG_CORE_SIZE @ 判断第一个 atags 参数的大小是否是与 ATAG_CORE 相同
| cmpne r5, #ATAG_CORE_SIZE_EMPTY
| bne 1f
| ldr r5, [r2, #4]
| ldr r6, =ATAG_CORE @ 再判断该参数是不是 ATAG_CORE 节点
| cmp r5, r6
| bne 1f
|
| 2: mov pc, lr @ 所传递参数合法,正常返回
|
| 1: mov r2, #0
| mov pc, lr
| ENDPROC(__vet_atags)
步骤 4
当前内核镜像在内存中的布局
// 物理内存中的布局
_____________________________________________
| | | |
| | | |
| | 段描述符 | kernel image |
| | | |
|______|__________|__________________________|
0x4000_0000 0x4000_8000
// 虚拟内存中的布局
_____________________________________________
| | | |
| | | |
| | 段描述符 | kernel image |
| | | |
|______|__________|__________________________|
0xc000_0000 0xc000_8000
内核建立内核空间临时的线性映射,采用一级映射,也就是 section 模式,每个section 为 1MB.
#ifdef CONFIG_SMP_ON_UP
bl __fixup_smp @ 自旋锁在 SMP 和 UP 上的相关修正
@ arch/arm/include/asm::ALT_SMP
#endif
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT
bl __fixup_pv_table @ 物理地址和虚拟地址间的偏移修正等
@ arch/arm/include/asm::pv_stub
#endif
bl __create_page_tables
|
+-->/* r8 = phys_offset, r9 = cpuid, r10 = procinfo
| *
| * Returns:
| * r0, r3, r5-r7 corrupted
| * r4 = physical page table address
| */
| __create_page_tables:
| pgtbl r4, r8 @ 将页表起始物理地址放入 r4 中
| |
| +-->.macro pgtbl, rd, phys
| | add \rd, \phys, #TEXT_OFFSET - PG_DIR_SIZE
| | .endm
|
| @ 对页表区域进行清零
| mov r0, r4
| mov r3, #0
| add r6, r0, #PG_DIR_SIZE
| 1: str r3, [r0], #4
| str r3, [r0], #4
| str r3, [r0], #4
| str r3, [r0], #4
| teq r0, r6
| bne 1b
|
| ldr r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags
|
| @ 创建临时的线性映射
| @ 页表项格式:一级页表入口值[31:20] MMUFLAGS[19:0]
| adr r0, __turn_mmu_on_loc
| ldmia r0, {r3, r5, r6}@ 得到函数的物理地址
| sub r0, r0, r3 @ virt->phys offset
| add r5, r5, r0 @ phys __turn_mmu_on
| add r6, r6, r0 @ phys __turn_mmu_on_end
| mov r5, r5, lsr #SECTION_SHIFT @ 得到一级页表入口值
| mov r6, r6, lsr #SECTION_SHIFT
|
| 1: orr r3, r7, r5, lsl #SECTION_SHIFT @ 一级段描述符
| str r3, [r4, r5, lsl #PMD_ORDER] @ 将 r3 中存放的段描述符放入对应的物理地址中
| cmp r5, r6
| addlo r5, r5, #1 @ 下一个段描述符
| blo 1b
|
| @ 设置映射页表
| mov r3, pc
| mov r3, r3, lsr #SECTION_SHIFT @ 得到当前执行程序的段描述符编号
| orr r3, r7, r3, lsl #SECTION_SHIFT @ 合成段描述符
| @ kernel_start=0xc000_8000, section_shift=20, pmd_order=2
| @ 以下两行其实是在计算段描述符的入口地址
| @ 因为要回写到 r0 中,因此拆分来写的
| add r0, r4, #(KERNEL_START & 0xff000000) >> (SECTION_SHIFT - PMD_ORDER)
| str r3, [r0, #((KERNEL_START & 0x00f00000) >> SECTION_SHIFT) << PMD_ORDER]!
| ldr r6, =(KERNEL_END - 1) @ 内核(包括数据段)的最后一个字节位置
| add r0, r0, #1 << PMD_ORDER @ 下一个段描述符存放的物理地址
| add r6, r4, r6, lsr #(SECTION_SHIFT - PMD_ORDER) @ 内核需要的最后一个段描述符存放的物理地址
| 1: cmp r0, r6
| @ 内核对自身进行了线性映射,将自身物理内存所在段直接放入页表中
| add r3, r3, #1 << SECTION_SHIFT @ 下一个段描述符,只需要增加段基址即可
| strls r3, [r0], #1 << PMD_ORDER @ 写入到物理内存对应的页表中
| bls 1b
|
| @ 将 atags 所在段写到页表中
| mov r0, r2, lsr #SECTION_SHIFT @ atags 段编号
| movs r0, r0, lsl #SECTION_SHIFT @ 如果 r0 为零则赋值为 r8,即没有指定 atags 的情况
| moveq r0, r8
| sub r3, r0, r8 @ 段内偏移量
| add r3, r3, #PAGE_OFFSET @ 转化成虚拟地址
| add r3, r4, r3, lsr #(SECTION_SHIFT - PMD_ORDER) @ 得到该段描述符存放的物理地址
| orr r6, r7, r0 @ 合成段描述
| str r6, [r3] @ 写入物理内存中
|
| mov pc, lr
| ENDPROC(__create_page_tables)
/*
* r10 = base of xxx_proc_info structure selected by __lookup_processor_type
* On return, the CPU will be ready for the MMU to be turned on,
* r0 = CPU control register value.
*/
/*
* 以下代码流程
* 1. 设置v7核心,主要涉及SMP,准备MMU硬件配置,I/D cache,TLB,涉及协处理的配置
* --> arch/arm/mm/proc-v7.S::__v7_setup
* 2. 配置MMU,设置内存访问权限,并激活MMU
* --> arch/arm/kernel/head.S::__enable_mmu
* 3. 将数据段复制到内存中,清理bss段,将processor ID,machine ID,atags 指针保存到指定变量中
* --> arch/arm/kernel/head-common.S::__mmap_switched
* 4. __mmap_switched 最后进入C语言函数start_kernel,至此终于走出了汇编代码,进入C语言的天堂
* --> init/main.c::start_kernel
*/
@ 因为跳转到该函数时,MMU已激活,故这里使用的是虚拟地址,而不是物理地址
ldr r13, =__mmap_switched @ address to jump to after
@ mmu has been enabled
adr lr, BSYM(1f) @ return (PIC) address
mov r8, r4 @ set TTBR1 to swapper_pg_dir
ARM( add pc, r10, #PROCINFO_INITFUNC )
THUMB( add r12, r10, #PROCINFO_INITFUNC )
THUMB( mov pc, r12 )
1: b __enable_mmu
关键宏定义
::arch/arm/kernel/vmlinux.ld.S
. = PAGE_OFFSET + TEXT_OFFSET
::arcm/arm/kernel/head.S
/*
* swapper_pg_dir is the virtual address of the initial page table.
* We place the page tables 16K below KERNEL_RAM_VADDR. Therefore, we must
* make sure that KERNEL_RAM_VADDR is correctly set. Currently, we expect
* the least significant 16 bits to be 0x8000, but we could probably
* relax this restriction to KERNEL_RAM_VADDR >= PAGE_OFFSET + 0x4000.
*/
#define KERNEL_RAM_VADDR (PAGE_OFFSET + TEXT_OFFSET)
#if (KERNEL_RAM_VADDR & 0xffff) != 0x8000
#error KERNEL_RAM_VADDR must start at 0xXXXX8000
#endif
#ifdef CONFIG_ARM_LPAE
/* LPAE requires an additional page for the PGD */
#define PG_DIR_SIZE 0x5000
#define PMD_ORDER 3
#else
#define PG_DIR_SIZE 0x4000
#define PMD_ORDER 2
#endif
.globl swapper_pg_dir
.equ swapper_pg_dir, KERNEL_RAM_VADDR - PG_DIR_SIZE
.macro pgtbl, rd, phys
add \rd, \phys, #TEXT_OFFSET - PG_DIR_SIZE
.endm
#ifdef CONFIG_XIP_KERNEL
#define KERNEL_START XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)
#define KERNEL_END _edata_loc
#else
#define KERNEL_START KERNEL_RAM_VADDR
#define KERNEL_END _end
#endif
调用 start_kernel的更多相关文章
- linux启动过程分析
参考:http://blog.chinaunix.net/uid-26495963-id-3066282.html http://www.comptechdoc.org/os/linux/startu ...
- Linux启动过程详解(inittab、rc.sysinit、rcX.d、rc.local)
启动第一步--加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的重要,以至于计算机必须在最开始就找到它.这是因为BIOS中包含了CPU的相关信息.设备启动顺序信息.硬 ...
- Linux启动过程详解
Linux启动过程详解 附上两张图,加深记忆 图1: 图2: 第一张图比较简洁明了,下面对第一张图的步骤进行详解: 加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的 ...
- Linux与Windows xp操作系统启动过程
Linux启动过程: 第一步,加载BIOS,当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的重要,以至于计算机必须在最开始就找到它.这是因为BIOS中包含了CPU的相关信息.设备 ...
- [转载] Linux启动过程详解-《别怕Linux编程》之八
本原创文章属于<Linux大棚>博客,博客地址为http://roclinux.cn.文章作者为rocrocket.为了防止某些网站的恶性转载,特在每篇文章前加入此信息,还望读者体谅. = ...
- linux开机启动
开机过程指的是从打开计算机电源直到LINUX显示用户登录画面的全过程.分析LINUX开机过程也是深入了解LINUX核心工作原理的一个很好的途径. 启动第一步--加载BIOS 当你打开计算机电源,计算机 ...
- system(linux) power on note
读詹荣开文档摘 BIOS 在完成硬件检测和资源分配后,将硬盘 MBR 中的 Boot Loader 读到系统的 RAM 中,然后将控制权交给 OS Boot Loader Boot Loader执行全 ...
- Linux的启动过程
Linux的启动过程,也就是Linux的引导流程,这部分主要是理论知识. Linux的开机启动过程 1.1第一步--加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的 ...
- Linux启动过程详解 (转)
启动第一步--加载BIOS当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的重要,以至于计算机必须在最开始就找到它.这是因为BIOS中包含了CPU的相关信息.设备启动顺序信息.硬盘 ...
随机推荐
- OpenStack 删除instance 和其附加的volumes
在openstack里面有时候删除instance时,volume无法跟着删除,可以自己编写脚本来实现, 脚本代码如下: #!/bin/bash for i in $(cat /root/host-d ...
- 初识DP动态规划
一.多阶段决策过程的最优化问题 在现实生活中,有类活 动的过程,由于 它的特殊性,可将过程分成若干个互相阶段.在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果.当阶段决策的选取不是任意确 ...
- tar命令基本、进阶使用指北
tar命令基本.进阶使用指北 摘要 打包与压缩是我们在计算机系统日常使用中必备的一个工具,就如我们在使用Windows系统,也需要类似WinRAR的压缩软件来将许多数据.文件打包成一个文件,并压缩其占 ...
- 线程池(Java中有哪些方法获取多线程)
线程池(Java中有哪些方法获取多线程) 前言 获取多线程的方法,我们都知道有三种,还有一种是实现Callable接口 实现Runnable接口 实现Callable接口 实例化Thread类 使用线 ...
- IoTClientTool自动升级更新
IoTClientTool是什么 IoTClientTool是什么,IoTClientTool是IoTClient开源组件的可视化操的作实现.方便对plc设备和ModBusRtu.BACnet.串口等 ...
- Java——Java代码的执行顺序
该系列博文会告诉你如何从入门到进阶,一步步地学习Java基础知识,并上手进行实战,接着了解每个Java知识点背后的实现原理,更完整地了解整个Java技术体系,形成自己的知识框架. 一.构造方法 构造方 ...
- Java——Java泛型
该系列博文会告诉你如何从入门到进阶,一步步地学习Java基础知识,并上手进行实战,接着了解每个Java知识点背后的实现原理,更完整地了解整个Java技术体系,形成自己的知识框架. 一.泛型概述 1.定 ...
- [csu/coj 1080]划分树求区间前k大数和
题意:从某个区间内最多选择k个数,使得和最大 思路:首先题目给定的数有负数,如果区间前k大出现负数,那么负数不选和更大,于是对于所有最优选择,负数不会出现,所以用0取代负数,问题便转化为区间的前k大数 ...
- qt creator源码全方面分析(4-6)
目录 Qt插件基础 Qt插件基础 我们知道Qt Creator源码是基于插件架构的,那么我们先来介绍下插件基础知识. 相关内容如下: How to Create Qt Plugins [ - Defi ...
- Java ThreadLocal解析
简介 ThreadLocal 类似局部变量,解决了单个线程维护自己线程内的变量值(存.取.删),让线程之间的数据进行隔离.(InheritableThreadLocal 特例) 这里涉及三个类,Thr ...