二维DCT变换 | Python实现
引言
- 最近专业课在学信息隐藏与数字水印,上到了变换域隐藏技术,提到了其中的
DCT
变换,遂布置了一个巨烦人的作业,让手动给两个\(8\times8\)的矩阵做二维DCT
变换,在苦逼的算了一小时后,我决定放弃,转而决定写脚本来解决,\((๑•̀ㅂ•́)و✧\),正好看网上好像只有matlab
的脚本,好像没人用Python
来写这个,遂打算搞一个(你就是纯粹为了偷懒不做作业\((* ̄rǒ ̄))\)
二维DCT变换原理
还是要普及一下的嘛,毕竟让我头疼了一下午的东西,当然也要好好给你们分享一下啦ԅ(¯﹃¯ԅ)
DCT(Discrete Cosine Transform)
,又叫离散余弦变换,它的第二种类型,经常用于信号和图像数据的压缩。经过DCT
变换后的数据能量非常集中,一般只有左上角的数值是非零的,也就是能量都集中在离散余弦变换后的直流和低频部分1、一维
DCT
变换
要弄懂二维离散余弦变换,首先我们需要先了解它在一维下的情况,具体表达式如下:
\(F(0)=\dfrac{1}{\sqrt{N}}\sum_{x=0}^{N-1} f(x)\) \(...........1\)
\(F(u)=\sqrt{\dfrac{2}{N}}\sum_{x=0}^{N-1} f(x) \cos{\dfrac{(2x+1)u\pi}{2N}}\) \(...........2\)
式中\(F(u)\)是第\(u\)个余弦变换值,\(u\)是广义频率变量,\(u=1,2,….,N-1;f(x)\)是时域\(N\)点序列。\(x= 1,2,….,N-1;\)2、二维
DCT
变换
二维离散余弦变换可由下列表达式表示:
\(F(0,0)=\dfrac{1}{N}\sum_{x=0}^{N-1}\sum_{y=0}^{N-1} f(x,y)\) \(...........3\)
\(F(0,v)=\dfrac{\sqrt{2}}{N}\sum_{x=0}^{N-1}\sum_{y=0}^{N-1} f(x,y) \cdot \cos{\dfrac{(2y+1)v\pi}{2N}}\) \(...........4\)
\(F(u,0)=\dfrac{\sqrt{2}}{N}\sum_{x=0}^{N-1}\sum_{y=0}^{N-1} f(x,y) \cdot \cos{\dfrac{(2x+1)u\pi}{2N}}\) \(...........5\)
\(F(u,v)=\dfrac{2}{N}\sum_{x=0}^{N-1}\sum_{y=0}^{N-1} f(x,y) \cdot \cos{\dfrac{(2x+1)u\pi}{2N}}\cdot \cos{\dfrac{(2y+1)v\pi}{2N}}\) \(...........6\)
\(6\)是二维离散余弦变换的正变换公式,其中\(f(x,y)\)是空间域一个\(N*N\)的二维向量元素,即一个\(N*N\)的矩阵,\(x,y = 0,1,2,…,N-1;F(U,V)\)是经计算后得到的变换域矩阵,\(u,v = 0,1,2,….,N-1\).求和可分性是二维离散余弦变换的一个重要特征,因此我们可以用下式表示\(6\):
\(F(u,v)=\dfrac{2}{N}\sum_{x=0}^{N-1} \cdot \cos{\dfrac{(2x+1)u\pi}{2N}}{\sum_{y=0}^{N-1} f(x,y) }\cdot \cos{\dfrac{(2y+1)v\pi}{2N}} ..........7\)
由一维和二维的离散余弦变换公式性质可以推导得到二维离散余弦变换也可以写成矩阵相乘形式:
\(F=A[f(x,y)A^{T}]..............8\)\(A\)为一维离散余弦变换的变换系数矩阵,\(A^{T}\)是\(A\)的转置矩阵
对图像进行二维离散余弦变换\((2D-DCT)\)的步骤
1.获得图像的二维数据矩阵\(f(x,y)\);
2.求离散余弦变换的系数矩阵\(A\);
3.求系数矩阵对应的转置矩阵\(A^{T}\);
4.根据公式\(F=A\times[f(x,y)]\times A^{T}\)计算离散余弦变换;注:公式的大致推导,由于\(A\)都是正交阵,所以\(A^{-1}=A^{T}\),故\(Y=A\times[f(x,y)]\times A^{T} ,f(x,y)=A^{T}\times Y \times A=A^{T}\times A\times[f(x,y)]\times A^{T}\times A\)
参考链接:https://www.cnblogs.com/latencytime/p/10228938.html
参考链接:https://blog.csdn.net/allen_sdz/article/details/83279210
Python编程实现
- 大家注意上述的第\(8\)个式子,将变换的两个\(\sum_{i=0}^n\)转变成了变换矩阵和转置矩阵以及代转换矩阵之间乘积的问题(注意这里的乘是指的叉乘)
- 遂可以发现\(DCT\)后的矩阵应等于\(A\times X \times A^{T}\)
- 此外,对于\(x,y\)同时为0的情况,其参数要单独考虑
- 大致的思路就是,由于直接计算变换比较繁琐,所以我们就先对于一个单位阵进行操作运算,将其变成一个
DCT
的变换矩阵,而后在与代算矩阵和转置矩阵叉乘即可。 - 至此我们就可以着手写脚本了,这里主要是用了两个库
numpy
和math
# -*- coding:utf-8 -*-
# Author:Konmu
# DCT二维变换
from numpy import array as matrix, arange,zeros,transpose,matmul,ones
from math import sqrt,cos,pi
'''
作业代转化矩阵1
a=matrix([[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0],
[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0],
[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0],
[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0]])
'''
a=ones((8,8))#生成单位阵
for i in range(8):
a[i]=matrix([128]*8)
# 生成全是128的矩阵(作业代转化矩阵2)
'''
测试数据
a=matrix([[61,19,50,20],
[82,26,61,45],
[89,90,82,43],
[93,59,53,97]])
'''
A=zeros((8,8))#生成0矩阵
shape=a.shape[1]#获取维数
for i in range(8):
for j in range(8):
if(i == 0):
x=sqrt(1/shape)
else:
x=sqrt(2/shape)
A[i][j]=x*cos(pi*(j+0.5)*i/shape)#与维数相关
A_T=A.transpose()#矩阵转置
Y1=matmul(A,a)#矩阵叉乘
Y=matmul(Y1,A_T)
print(Y)
'''
想要近似值可以尝试这样输出
for i in range(shape):
for j in range(shape):
print('{:^8.4f}'.format(Y[i][j]),end='\n')
print()
'''
- 结果:
0和255的对称矩阵
128的单元素矩阵
测试矩阵
结语
- ok,完美撒花,结束,交作业喽ヾ(≧O≦)〃嗷~C
二维DCT变换 | Python实现的更多相关文章
- 二维DCT变换
DCT(Discrete Consine Transform),又叫离散余弦变换,它的第二种类型,经常用于信号和图像数据的压缩.经过DCT变换后的数据能量非常集中,一般只有左上角的数值是非零的,也就是 ...
- DCT变换、DCT反变换、分块DCT变换
一.引言 DCT变换的全称是离散余弦变换(Discrete Cosine Transform),主要用于将数据或图像的压缩,能够将空域的信号转换到频域上,具有良好的去相关性的性能.DCT变换本身是无损 ...
- python创建与遍历List二维列表
python创建与遍历List二维列表 觉得有用的话,欢迎一起讨论相互学习~Follow Me python 创建List二维列表 lists = [[] for i in range(3)] # 创 ...
- Python 二维码解码
二维码解析 Python中关于二维码解析的现成模块有很多,比较著名的就是Zbar以及ZXing.然而很不幸的是,官方的版本都是支持到python2.x,下面是在python2.x的例子: import ...
- 使用Python第三方库生成二维码
本文主要介绍两个可用于生成二维码的Python第三方库:MyQR和qrcode. MyQR的使用: 安装: pip install MyQR 导入: from MyQR import myqr imp ...
- Python用MyQR生成自定义个性二维码
MyQR是一个能够生成自定义二维码的python第三方库,根据需要能够生成普通二维码.带背景图片的艺术二维码.动态二维码. 1.MyQR安装 安装非常简单,直接用pip install MyQR,需要 ...
- 第三百二十节,Django框架,生成二维码
第三百二十节,Django框架,生成二维码 用Python来生成二维码,需要qrcode模块,qrcode模块依赖Image 模块,所以首先安装这两个模块 生成二维码保存图片在本地 import qr ...
- Python 创建本地服务器环境生成二维码
一. 需求 公司要做一个H5手机端适配页面,因技术问题所以H5是外包的,每次前端给我们源码,我们把源码传到服务器让其他人访问看是否存在bug,这个不是很麻烦吗?有人说,可以让前端在他们的服务器上先托管 ...
- Python生成二维码脚本
简单的记录下二维码生成和解析的Python代码 依赖下面三个包: PIL(图像处理包,安装:pip install PIL) qrcode(二维码生成包,安装:pip install qrcode) ...
随机推荐
- 06 __init__ 和 __new__的关系和不同
一. 双下new 和 双下init 关系 首先从__new__(cls,a,b,c)的参数说说起,__new__方法的第一个参数是这个类,而其余的参数会在调用成功后全部传递给__init__方法初始化 ...
- kafka-eagle监控kafka
最近想做一个kafka监控,本来准备用zabbix来监控的,需要重复造轮子,本来准备用kafka-Manager的,在GitHub上无意发现了kafka-eagle,看了官方介绍准备试一下..... ...
- NLP(二十九)一步一步,理解Self-Attention
本文大部分内容翻译自Illustrated Self-Attention, Step-by-step guide to self-attention with illustrations and ...
- 【Kafka】消息队列相关知识
目录 概述 常用消息队列 常用消息队列对比 应用场景 消息队列的两种模式 概述 消息(Message) 是指在应用系统之间传递的数据.消息可以非常简单,比如只包含文本字符串,也可以更复杂,可能包含嵌入 ...
- redis 集群安装
redis集群安装 1.下载redis源码 2.解压并进入解压后的文件夹redis内 3.make,生成一系列的文件(mkreleasehdr.sh, redis-benchmark, redis-c ...
- angular js 分页
一.编写实体类PageResult public class PageResult implements Serializable { private Long total;//总记录数 privat ...
- POI 导入excel数据自动封装成model对象--代码
所有的代码如下: import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; ...
- Millar Robin模板
\(Millar Robin\)模板 hdu2138 \(Code\) #include <cstdio> #include <iostream> #include <a ...
- 格式转换工具:使用kgEncode转换压缩无损音乐
在kugou安装目录下,有kgEncode目录,可以在各种格式中相互转换
- docker容器与系统时间同步最佳方法
前言:在Docker容器创建好之后,可能会发现容器时间跟宿主机时间不一致,此时需要同步它们的时间,让容器时间跟宿主机时间保持一致. 一.分析时间不一致的原因 宿主机采用了CST时区,CST应该是指(C ...