在 C/C++ 中, 直接利用 (x + y) >> 1 来计算 \(\left\lfloor {\left( {x + y} \right)/2} \right\rfloor\) (两个整数的平均值并向下取整)以及直接利用 (x + y + 1) >> 1 来计算 \(\left\lceil {\left( {x + y} \right)/2} \right\rceil\) (两个整数的平均值并向上取整)的结果可能有误, 因为 (x + y) >> 1(x + y + 1) >> 1 中的 x + y 可能会发生数值溢出. 而 \(\left\lfloor {\left( {x + y} \right)/2} \right\rfloor\) 和 \(\left\lceil {\left( {x + y} \right)/2} \right\rceil\) 的结果是不可能数值溢出的, 这就引发我们思考可不可能通过某种方式来规避平均值计算中的数值溢出.

方式一

利用如下公式

\(\begin{align}
\left\lfloor {\left( {x + y} \right)/2} \right\rfloor = \left\lfloor {x/2} \right\rfloor + \left\lfloor {y/2} \right\rfloor + \left\lfloor {\left( {x\bmod 2 + y\bmod 2} \right)/2} \right\rfloor \hfill \\
\left\lceil {\left( {x + y} \right)/2} \right\rceil = \left\lfloor {x/2} \right\rfloor + \left\lfloor {y/2} \right\rfloor + \left\lceil {\left( {x\bmod 2 + y\bmod 2} \right)/2} \right\rceil \hfill \\
\end{align}\)

下面是对上述两式的证明:

\(\begin{align}
\left\lfloor {\left( {x + y} \right)/2} \right\rfloor &= \left\{ {\begin{array}{*{20}{c}}
{m + n}&{x = 2m,y = 2n} \\
{m + n}&{x = 2m + 1,y = 2n} \\
{m + n}&{x = 2m,y = 2n + 1} \\
{m + n + 1}&{x = 2m + 1,y = 2n + 1}
\end{array}} \right. \\
&= \left\lfloor {x/2} \right\rfloor + \left\lfloor {y/2} \right\rfloor + \left\lfloor {\left( {x\bmod 2 + y\bmod 2} \right)/2} \right\rfloor \\
\end{align}\)

\(\begin{align}
\left\lceil {\left( {x + y} \right)/2} \right\rceil &= \left\{ {\begin{array}{*{20}{c}}
{m + n}&{x = 2m,y = 2n} \\
{m + n + 1}&{x = 2m + 1,y = 2n} \\
{m + n + 1}&{x = 2m,y = 2n + 1} \\
{m + n + 1}&{x = 2m + 1,y = 2n + 1}
\end{array}} \right. \\
&= \left\lfloor {x/2} \right\rfloor + \left\lfloor {y/2} \right\rfloor + \left\lceil {\left( {x\bmod 2 + y\bmod 2} \right)/2} \right\rceil \\
\end{align}\)

其中 \(m,n\) 均为整数.

借用上面的公式可以 \(\left\lfloor {\left( {x + y} \right)/2} \right\rfloor\) 转化为如下的 C/C++ 代码 (据说这段代码还被申请了专利):

(x >> 1) + (y >> 1) + (x & y & 1);

可以将 \(\left\lceil {\left( {x + y} \right)/2} \right\rceil\) 转化为如下的 C/C++ 代码:

(x >> 1) + (y >> 1) + ((x | y) & 1);

这两段代码都不会发生数值溢出.

方式二

设 x 和 y 只能取 0 和 1 值, 则:

x y x + y x ^ y x & y x | y 2*(x & y) + (x ^ y) 2*(x | y) - (x ^ y)
0 0 0 0 0 0 0 + 0 = 0 0 - 0 = 0
0 1 1 1 0 1 0 + 1 = 1 10 - 1 = 1
1 0 1 1 0 1 0 + 1 = 1 10 - 1 = 1
1 1 10 0 1 1 10 + 0 = 10 10 - 0 = 10

注意上表中的 10 是二进制下的 10, 即十进制下的 2, & 是逻辑与操作, | 是逻辑或运算, ^ 是逻辑异或操作.

由上表可见 x + y = 2*(x & y) + (x ^ y) = 2*(x | y) - (x ^ y).

无符号整型

对于无符号整型, 设 \(x = \sum\nolimits_{i = 0}^{n - 1} {{u_i}{2^i}}\) 和 \(y = \sum\nolimits_{i = 0}^{n - 1} {{v_i}{2^i}}\), 其中 \(u_i,v_i\in\left\{ 0, 1 \right\}\).

\(\begin{align}
x + y &= \sum\nolimits_{i = 0}^{n - 1} {{u_i}{2^i}} {\text{ + }}\sum\nolimits_{i = 0}^{n - 1} {{v_i}{2^i}} \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} + {v_i}} \right){2^i}} \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {2 \times \left( {{u_i}\& {v_i}} \right) + \left( {{u_i} \wedge {v_i}} \right)} \right){2^i}} \\
&= 2\sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^i}} \\
\end{align}\)

\(\begin{align}
\left\lfloor {\left( {x + y} \right)/2} \right\rfloor &= \left\lfloor {\sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right\rfloor \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} + \sum\nolimits_{i = 1}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} \\
\end{align}\)

上式用 C/C++语言可以表示为:

(x & y) + ((x ^ y) >> 1);

\(\begin{align}
x + y &= \sum\nolimits_{i = 0}^{n - 1} {{u_i}{2^i}} {\text{ + }}\sum\nolimits_{i = 0}^{n - 1} {{v_i}{2^i}} \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} + {v_i}} \right){2^i}} \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {2 \times \left( {{u_i}|{v_i}} \right) - \left( {{u_i} \wedge {v_i}} \right)} \right){2^i}} \\
&= 2\sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} - \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^i}} \\
\end{align}\)

\(\begin{align}
\left\lceil {\left( {x + y} \right)/2} \right\rceil &= \left\lceil {\sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} - \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right\rceil \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} - \sum\nolimits_{i = 1}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} \\
\end{align}\)

上式用 C/C++ 语言可以表示为:

(x | y) - ((x ^ y) >> 1);

有符号整型

对于有符号整型, 设 \(x = - {u_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{u_i}{2^i}}\) 和 \(y = - {v_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{v_i}{2^i}}\), 其中 \(u_i,v_i\in\left\{ 0, 1 \right\}\).

\(\begin{align}
x + y &= - {u_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{u_i}{2^i}} - {v_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{v_i}{2^i}} \\
&= - \left( {{u_{n - 1}} + {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} + {v_i}} \right){2^i}} \\
&= - \left( {2 \times \left( {{u_{n - 1}}\& {v_{n - 1}}} \right) + \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right)} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {2 \times \left( {{u_i}\& {v_i}} \right) + \left( {{u_i} \wedge {v_i}} \right)} \right){2^i}} \\
&= 2\left( { - \left( {{u_{n - 1}}\& {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} } \right) + \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^i}} } \right) \\
\end{align}\)

\(\begin{align}
\left\lfloor {\left( {x + y} \right)/2} \right\rfloor &= \left\lfloor {\left( { - \left( {{u_{n - 1}}\& {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} } \right) + \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 2}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right)} \right\rfloor \\
&= \left( { - \left( {{u_{n - 1}}\& {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} } \right) + \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 2}} + \sum\nolimits_{i = 1}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right) \\
\end{align}\)

上式用 C/C++ 语言可以表示为:

(x & y) + ((x ^ y) >> 1);

\(\begin{align}
x + y &= - {u_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{u_i}{2^i}} - {v_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{v_i}{2^i}} \\
&= - \left( {{u_{n - 1}} + {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} + {v_i}} \right){2^i}} \\
&= - \left( {2 \times \left( {{u_{n - 1}}|{v_{n - 1}}} \right) - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right)} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {2 \times \left( {{u_i}|{v_i}} \right) - \left( {{u_i} \wedge {v_i}} \right)} \right){2^i}} \\
&= 2\left( { - \left( {{u_{n - 1}}|{v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} } \right) - \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^i}} } \right) \\
\end{align}\)

\(\begin{align}
\left\lceil {\left( {x + y} \right)/2} \right\rceil &= \left\lceil {\left( { - \left( {{u_{n - 1}}|{v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} } \right) - \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 2}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right)} \right\rceil \\
&= \left( { - \left( {{u_{n - 1}}|{v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} } \right) - \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 2}} + \sum\nolimits_{i = 1}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right) \\
\end{align}\)

上式用 C/C++ 语言可以表示为:

(x | y) - ((x ^ y) >> 1);

综合

综合上面的分析, 可见对于有符号整型和无符号整型,

\(\left\lceil {\left( {x + y} \right)/2} \right\rceil\) 都可以用 C/C++ 语言表示为:

(x & y) + ((x ^ y) >> 1);

\(\left\lceil {\left( {x + y} \right)/2} \right\rceil\) 都可以用 C/C++ 语言表示为:

(x | y) - ((x ^ y) >> 1);

参考:

版权声明

版权声明:自由分享,保持署名-非商业用途-非衍生,知识共享3.0协议。

如果你对本文有疑问或建议,欢迎留言!转载请保留版权声明!

如果你觉得本文不错, 也可以用微信赞赏一下哈.

C/C++代码优化之求两个整型的平均值的更多相关文章

  1. swap 用指针交换两个整型数值

  2. c++作业:输入两个整数,用函数求两数之和。函数外部声明有什么作用?

    #include <iostream> using namespace std; int main(){ //求两数的和? int a,b,s; cout<<"请你输 ...

  3. Php数据类型之整型详解

    php中支持的数据类型 在php中主要支持8种数据类型.和3中伪类型的一个形式.8种数据类型分为以下三3大类,第一个就是我们的标量类型,标量类型它只能存储单一数据,那第二大类就是我们的复合类型,第三个 ...

  4. java 整型相除得到浮点型

    public class TestFloatOrDouble { public static void main(String[] args) { Point num1 = new Point(84, ...

  5. python 函数求两个数的最大公约数和最小公倍数

    1. 求最小公倍数的算法: 最小公倍数  =  两个整数的乘积 /  最大公约数 所以我们首先要求出两个整数的最大公约数, 求两个数的最大公约数思路如下: 2. 求最大公约数算法: 1. 整数A对整数 ...

  6. JavaScript求两个数字之间所有数字的和

    这是在fcc上的中级算法中的第一题,拉出来的原因并不是因为有什么好说的,而是我刚看时以为是求两个数字的和, 很显然错了.我感觉自己的文字理解能力被严重鄙视了- -.故拉出来折腾折腾. 要求: 给你一个 ...

  7. [LeetCode] Intersection of Two Linked Lists 求两个链表的交点

    Write a program to find the node at which the intersection of two singly linked lists begins. For ex ...

  8. 求两圆相交部分面积(C++)

    已知两圆圆心坐标和半径,求相交部分面积: #include <iostream> using namespace std; #include<cmath> #include&l ...

  9. 面试问题2:给一个5G的大文件,保存的数据为32位的整型,找到所有出现次数超过两次的数字

    问题描述:给一个5G的大文件,保存的数据为32位的整型,找到所有出现次数超过两次的数字 大数据操作: 解决方法一: 依次遍历文件数据, 开始32二进制清0 每次读取一个数,先和二进制位与,如果为0 则 ...

随机推荐

  1. airtest+poco多脚本、多设备批处理运行测试用例自动生成测试报告

    一:主要内容 框架功能及测试报告效果 airtest安装.环境搭建 框架搭建.框架运行说明 airtest自动化脚本编写注意事项 二:框架功能及测试报告效果 1. 框架功能: 该框架笔者用来作为公司的 ...

  2. Redis超详细总结

    NoSQL概述 一.数据存储的演化史 1.单机MySQL的美好年代 在90年代,一个网站的访问量一般都不大,用单个数据库完全可以轻松应付.在那个时候,更多的都是静态网页,动态交互类型的网站不多. 上述 ...

  3. G. Yash And Trees 线段树 + dfs序 + bitset

    这个是要用bitset 一个大整数的二进制 学习推荐博客 这个题目大意就是:给你n,m 还有一个序列,还有一个一棵树,有一种操作一种询问 操作是给你一个节点 把这个节点及其子节点都加上x 询问是 给你 ...

  4. Pycharm修改HTML模板

  5. HMM-前向后向算法

    基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,...\) \(\lambda(A,B,\pi)\) 状态转移概率 \(A = \{a ...

  6. 5.7.17版本mysqlbinlog实时拉取的二进制日志不完整的原因分析

    问题描述: 同事使用mysqlbinlog工具的--read-from-remote-server --raw选项,从远程实例实时拉取二进制日志时,发现得到的二进制日志文件大小与远程实例上的源文件大小 ...

  7. PCB规则

  8. 1058 A+B in Hogwarts (20分)

    1058 A+B in Hogwarts (20分) 题目: If you are a fan of Harry Potter, you would know the world of magic h ...

  9. 【题解】poj 3254 玉米田

    假如我们知道第i-1行的有x种放法,那么对于第i行的每一种放法都有x种,所以定义dp[i][j]表示第i行状态为j时的方法数,有转移方程:dp[i][j]=sum(dp[i-1][k]) k表示i-1 ...

  10. 浅谈HTTP和HTTPS

    HTTP和HTTPS协议 网络协议:计算机之间为了实现网络通信而达成的一种“约定”或“规则”,有了这种“约定”,不同厂商的生产设备,以及不同不同操作系统组成的计算机之间,就可以实现通信. HTTP(H ...