题意:背包重量为F-E,有N种硬币,价值为Pi,重量为Wi,硬币个数enough(无穷多个),问若要将背包完全塞满,最少需要多少钱,若塞不满输出“This is impossible.”。

分析:完全背包。

(1)构造二维数组:

dp[i][j]---背包重量为j时,前i种物品可得到的最大价值。

dp[i][j]=max{dp[i-1][j-k*W[i]]+k*P[i]|0<=k*W[i]<=F-E}

(2)构造滚动数组:(一维)

dp[j]---背包重量为j时,当前状态可得到的最大价值。

dp[j] = max(dp[j], dp[j - W[i]] + P[i]);(顺序枚举0~F-E)

原因:很显然,由于当前物品无穷多个,所以dp[j]的更新依赖于当前物品的dp[j - W[i]]的更新。

例如,背包重量为10。对于第一个物品,重量为3,价值为5,则dp[3]=5,而更新dp[6]时,dp[6]=max(dp[6],dp[6-3]+5)=10,已更新过的dp[3]相当于取一件第一个物品,因此dp[6]只需转移dp[3]的即可达到取两件第一个物品的目的。

对于本题,求最小值,因此dp[j] = min(dp[j], dp[j - W[i]] + P[i]);

又因背包要完全塞满,因此dp[0] = 0;这样可保证只有能将当前背包完全塞满的重量才可被更新为非INF。

还是上述例子,在研究装入第一件物品时,当更新dp[4]时,因为重量为3,显然只装第一件物品是塞不满重量为4的背包,所以dp[4]暂时不能被更新。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define lowbit(x) (x & (-x))
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 500 + 10;
const int MAXT = 10000 + 10;
using namespace std;
int P[MAXN], W[MAXN], dp[MAXT];
int main(){
int T;
scanf("%d", &T);
while(T--){
int E, F;
scanf("%d%d", &E, &F);
int w = F - E;
int N;
scanf("%d", &N);
for(int i = 0; i < N; ++i){
scanf("%d%d", &P[i], &W[i]);
}
memset(dp, INT_INF, sizeof dp);
dp[0] = 0;
for(int i = 0; i < N; ++i){
for(int j = W[i]; j <= w; ++j){
dp[j] = min(dp[j], dp[j - W[i]] + P[i]);
}
}
if(dp[w] == INT_INF) printf("This is impossible.\n");
else printf("The minimum amount of money in the piggy-bank is %d.\n", dp[w]);
}
return 0;
}

  

HDU - 1114 Piggy-Bank(完全背包讲解)的更多相关文章

  1. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  2. HDU 1114 Piggy-Bank(完全背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 题目大意:根据储钱罐的重量,求出里面钱最少有多少.给定储钱罐的初始重量,装硬币后重量,和每个对应 ...

  3. HDU - 1114 Piggy-Bank 【完全背包】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1114 题意 给出一个储钱罐 不知道里面有多少钱 但是可以通过重量来判断 先给出空储钱罐的重量 再给出装 ...

  4. 题解报告:hdu 1114 Piggy-Bank(完全背包恰好装满)

    Problem Description Before ACM can do anything, a budget must be prepared and the necessary financia ...

  5. hdu(1114)——Piggy-Bank(全然背包)

    唔..近期在练基础dp 这道题挺简单的(haha).可是我仅仅想说这里得注意一个细节. 首先题意: 有T组例子,然后给出储蓄罐的起始重量E,结束重量F(也就是当它里面存满了零钱的时候).然后给你一个数 ...

  6. HDU 1114 Piggy-Bank ——(完全背包)

    差不多是一个裸的完全背包,只是要求满容量的最小值而已.那么dp值全部初始化为inf,并且初始化一下dp[0]即可.代码如下: #include <stdio.h> #include < ...

  7. HDU 1114 完全背包 HDU 2191 多重背包

    HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means ...

  8. Piggy-Bank(HDU 1114)背包的一些基本变形

    Piggy-Bank  HDU 1114 初始化的细节问题: 因为要求恰好装满!! 所以初始化要注意: 初始化时除了F[0]为0,其它F[1..V]均设为−∞. 又这个题目是求最小价值: 则就是初始化 ...

  9. HDU 1114 Piggy-Bank(一维背包)

    题目地址:HDU 1114 把dp[0]初始化为0,其它的初始化为INF.这样就能保证最后的结果一定是满的,即一定是从0慢慢的加上来的. 代码例如以下: #include <algorithm& ...

随机推荐

  1. ROS学习笔记11-写一个简单的服务和客户端(C++版本)

    本文主要来源于:http://wiki.ros.org/ROS/Tutorials/WritingServiceClient%28c%2B%2B%29 写一个服务节点.在创建消息和服务中,我们创建了一 ...

  2. window和document的区别理解,bom和dom的区别理解

    Window对象: 是整个BOM的核心,所有对象和集合都以某种方式回接到window对象.Window对象表示整个浏览器窗口,但不必表示其中包含的内容. Document对象: 实际上是window对 ...

  3. java中将图片上传到配置好的ftp服务器上

    测试用例: @Test public void testFtp() throws Exception { //1.连接ftp服务器 FTPClient ftpClient = new FTPClien ...

  4. [易语言][ExDui][Tutorial]0.Hello,world!

    原创博客,请勿在未经授权的情况下转载. At the Beginning... 由于近期爱好摸鱼,并且对Gui开发萌生一丝兴趣.在尝试WPF被虐,使用Qt却不太喜欢整套庞大的框架后-- I choos ...

  5. Day2-L-棋盘问题-POJ1321

    在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C. ...

  6. Java泛型与数组深入研究

    Java中的泛型与数组平时开发用的很多,除了偶尔遇到"NullPointerException"和"IndexOutOfBoundsException"一般也不 ...

  7. 嵊州普及Day4T1

    题意:从n个数中选出k个数,使他们任意两数之差都等于m. 思路:任意差值都等于m,不就等价于k个数模m余数相同吗? 然后桶排储蓄一下各数余数即可. 见代码: #include<iostream& ...

  8. Spring boot PageHelper.startPage(pageIndex, pageSize)分页无效

    H5页面在测试列表的时候发现分页好像没有起到作用 看了一下后台也没有问题哈: 1.PageHelper.startPage(pageIndex, pageSize)要放在要分页的上面,也没错 2.查询 ...

  9. 查看 Secret【转】

    可以通过 kubectl get secret 查看存在的 secret. 显示有两个数据条目,kubectl describe secret 查看条目的 Key: 如果还想查看 Value,可以用  ...

  10. pytorch max和clamp

    torch.max() torch.max(a):数组a的最大值 torch.max(a, dim=1):多维数组沿维度1方向上的最大值,若a为二维数组,则为每行的最大值(此时是对每行的每列值比较取最 ...