FOC 算法基础之欧拉公式
FOC中电压矢量合成的推导,对于欧拉公式的几何意义做了一个全面的回顾。
欧拉公式
欧拉是一个天才,欧拉公式甚至被誉为上帝创造的公式,然后在FOC算法中也可以看到欧拉公式的影子,不过因为是最基础的知识,所以基本上的换算都是一笔带过,但是如果这里没有掌握就很难搞清楚实数平面如何换算到复数平面,以至于在SVPWM的求解中存在的都是向量运算,所以这里有必要理解欧拉公式的物理意义,这样可以加深FOC算法的理解。
欧拉公式如下所示;
{eix=cosx+isinx⋯①eπi+1=0⋯②\begin{cases}
e^{ix} = cosx + isinx \cdots ①\\
e^{\pi i} + 1 = 0 \cdots ②
\end{cases}
{eix=cosx+isinx⋯①eπi+1=0⋯②
这两个公式都被称之为欧拉公式;
eee 是自然对数的底,iii 是虚数(i=−1i=\sqrt{-1}i=−1)。
根据式 ① 可以推导出以下另外两个变式;
推导过程如下;
令x=−xx = -xx=−x,可以得到④式,如下;
{eix=cosx+isinx⋯③e−ix=cosx−isinx⋯④\begin{cases}
e^{ix} = cosx + isinx \cdots ③\\
e^{-ix} = cosx - isinx \cdots ④\\
\end{cases}
{eix=cosx+isinx⋯③e−ix=cosx−isinx⋯④
所以 ③ 等式左右两端与 ④ 式 相加得到;
cosx=eix+e−ix2⋯⑤
cosx = \cfrac{e^{ix}+e^{-ix}}{2}\cdots ⑤
cosx=2eix+e−ix⋯⑤
所以 ③ 等式左右两端与 ④ 式 相减得到;
sinx=eix−e−ix2i⋯⑥
sinx = \cfrac{e^{ix}-e^{-ix}}{2i}\cdots ⑥
sinx=2ieix−e−ix⋯⑥
几何意义
reiθre^{i\theta}reiθ则表示模长为rrr的向量旋转了角度θ\thetaθ,下面会进一步介绍。
复数平面
复数平面坐标xxx轴作为实数轴,yyy轴作为虚数轴。这里可以通过欧拉公式,将实数平面换到复数平面,如下图所示;
已知这是一个半径为rrr,圆心为OOO的圆,则存在;
reiθ=r(cosθ+isinθ)
re^{i\theta} = r(cos\theta + isin\theta)
reiθ=r(cosθ+isinθ)
上式表示向量 OP→\overrightarrow{OP}OP 逆时针旋转了角度 θ\thetaθ , ∣OP→∣=r| \overrightarrow{OP}| = r∣OP∣=r;
动态过程
假设向量OC→\overrightarrow{OC}OC逆时针旋转,与xxx轴夹角为θ\thetaθ,半径r=10r = 10r=10,即 ∣OC→∣=r=10| \overrightarrow{OC}| = r =10∣OC∣=r=10,具体如下图所示;
这里分析一下图中的几个关键点;
- 红色点的坐标为:(θ,10sinθ)(\theta, 10sin\theta)(θ,10sinθ),红色的正弦曲线为红色点的运动轨迹;
- 绿色点的坐标为;(10cosθ,θ)(10cos\theta, \theta)(10cosθ,θ),绿色的正弦曲线为绿色点的运动轨迹;
- CGCGCG为向量OC→\overrightarrow{OC}OC在xxx轴上的投影,∣CG∣=10cosθ|CG| = 10cos\theta∣CG∣=10cosθ;
- CHCHCH为向量OC→\overrightarrow{OC}OC在yyy轴上的投影,∣CH∣=10sinθ|CH| = 10sin\theta∣CH∣=10sinθ;
可以发现,向量在复平面做圆周运动,其实数域相当于是在做正弦运动。后面再FOC中的三相正弦波形的合成可以做一下分析。
加法
欧拉公式里的相加则比较简单,相当于两个向量的相加;
AE→=AC→+AD→\overrightarrow{AE} = \overrightarrow{AC} + \overrightarrow{AD}AE=AC+AD
如下图所示;
所以存在特殊情况当 θ=0\theta = 0θ=0时则有;
AE→=∣AE→∣(ej(θ+2π3)+ej(θ−2π3))\overrightarrow{AE} = |\overrightarrow{AE}|(e^{j(\theta+\cfrac{2\pi}{3})} + e^{j(\theta-\cfrac{2\pi}{3})} )AE=∣AE∣(ej(θ+32π)+ej(θ−32π))
直接进行符合向量相加;
AE→=∣AE→∣ej(θ+π)\overrightarrow{AE} = |\overrightarrow{AE}|e^{j(\theta+\pi)}AE=∣AE∣ej(θ+π)
具体如下所示;
FOC电压矢量的推导
三相永磁同步电机的驱动电路如下图所示;
详细的坐标变换可以参考《FOC中的Clarke变换和Park变换详解》,根据图示电路可以发现在三相永磁同步电机的驱动电路中,三相逆变输出的三相电压为UAU_{A}UA,UBU_{B}UB,UCU_{C}UC将作用于电机,那么在三相平面静止坐标系ABC中,电压方程满足以下公式:
{UA=UmcosθeUB=Umcos(θe−2π3)UC=Umcos(θe+2π3) \begin{cases}
U_{A} = U_{m}cos\theta_{e} \\
U_{B} = U_{m}cos(\theta_{e} - \cfrac{2\pi}{3}) \\
U_{C} = U_{m}cos(\theta_{e} + \cfrac{2\pi}{3})
\end{cases}⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧UA=UmcosθeUB=Umcos(θe−32π)UC=Umcos(θe+32π)
UmU_mUm为相电压基波峰值;
因此根据前面式⑤cosx=eix+e−ix2⋯⑤
cosx = \cfrac{e^{ix}+e^{-ix}}{2}\cdots ⑤
cosx=2eix+e−ix⋯⑤
可以将该方程组转换到复平面可以得到,下式统一使用θ\thetaθ 表示θe\theta_{e}θe;
{UA=Umcosθe=Um2(eiθ+e−iθ)UB=Umcos(θe+2π3)=Um2(e(iθ−2π3)+e−(iθ−2π3))UC=Umcos(θe−2π3)=Um2(e(iθ+2π3)+e−(iθ+2π3)) \begin{cases}
U_{A}= U_{m}cos\theta_{e} = \cfrac{ U_{m}}{2}(e^{i\theta} + e^{-i\theta})\\
U_{B}= U_{m}cos(\theta_{e} + \cfrac{2\pi}{3}) = \cfrac{ U_{m}}{2}(e^{(i\theta-\cfrac{2\pi}{3})} + e^{-(i\theta-\cfrac{2\pi}{3})})\\
U_{C} = U_{m}cos(\theta_{e} - \cfrac{2\pi}{3}) = \cfrac{ U_{m}}{2}(e^{(i\theta+\cfrac{2\pi}{3})} + e^{-(i\theta+\cfrac{2\pi}{3})})
\end{cases}⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎧UA=Umcosθe=2Um(eiθ+e−iθ)UB=Umcos(θe+32π)=2Um(e(iθ−32π)+e−(iθ−32π))UC=Umcos(θe−32π)=2Um(e(iθ+32π)+e−(iθ+32π))
因为需要将三相电压合成矢量 U→=UA→+UB→+UC→\overrightarrow{U} = \overrightarrow{U_A} + \overrightarrow{U_B} + \overrightarrow{U_C}U=UA+UB+UC;下面增加向量的相位差;
{UA→=UA∗ej0UB→=UB∗e−(j2π3)UC→=UC∗e(j2π3) \begin{cases}
\overrightarrow{U_A} = U_A *e^{j0}\\
\overrightarrow{U_B} = U_B *e^{-(j\cfrac{2\pi}{3})} \\
\overrightarrow{U_C} = U_C *e^{(j\cfrac{2\pi}{3})}\\
\end{cases}⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧UA=UA∗ej0UB=UB∗e−(j32π)UC=UC∗e(j32π)
中间推导过程暂略,最终推导得到;
U→=32Umejθ=32Umejωt\overrightarrow{U} = \cfrac{3}{2}U_me^{j\theta} = \cfrac{3}{2}U_me^{j\omega t} U=23Umejθ=23Umejωt
总结
磕磕绊绊写了最后,基础学科的掌握还不够,很多知识回过头来看,总会有新的收获,但是由于笔者能力有限,文中难免出行错误和纰漏,望您能不吝赐教。
参考
https://www.matongxue.com/madocs/8.html
FOC 算法基础之欧拉公式的更多相关文章
- BLDC有感FOC算法理论及其STM32软硬件实现
位置传感器:旋转编码器 MCU:STM32F405RGT6 功率MOS驱动芯片:DRV8301 全文均假设在无弱磁控制的情况下 FOC算法理论 首先,我们要知道FO ...
- Levenberg-Marquardt算法基础知识
Levenberg-Marquardt算法基础知识 (2013-01-07 16:56:17) 转载▼ 什么是最优化?Levenberg-Marquardt算法是最优化算法中的一种.最优化是寻找使 ...
- 解读Raft(一 算法基础)
最近工作中讨论到了Raft协议相关的一些问题,正好之前读过多次Raft协议的那paper,所以趁着讨论做一次总结整理. 我会将Raft协议拆成四个部分去总结: 算法基础 选举和日志复制 安全性 节点变 ...
- 腾讯2017年暑期实习生编程题【算法基础-字符移位】(C++,Python)
算法基础-字符移位 时间限制:1秒 空间限制:32768K 题目: 小Q最近遇到了一个难题:把一个字符串的大写字母放到字符串的后面,各个字符的相对位置不变,且不能申请额外的空间. 你能帮帮小Q吗? ...
- 算法基础_递归_求杨辉三角第m行第n个数字
问题描述: 算法基础_递归_求杨辉三角第m行第n个数字(m,n都从0开始) 解题源代码(这里打印出的是杨辉三角某一层的所有数字,没用大数,所以有上限,这里只写基本逻辑,要符合题意的话,把循环去掉就好) ...
- 毕业设计预习:SM3密码杂凑算法基础学习
SM3密码杂凑算法基础学习 术语与定义 1 比特串bit string 由0和1组成的二进制数字序列. 2 大端big-endian 数据在内存中的一种表示格式,规定左边为高有效位,右边为低有效位.数 ...
- Python之算法基础
1>递归相关: 递归:递归算法是一种直接或间接地调用自身算法的过程,在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且 易于 ...
- Python 迭代器&生成器,装饰器,递归,算法基础:二分查找、二维数组转换,正则表达式,作业:计算器开发
本节大纲 迭代器&生成器 装饰器 基本装饰器 多参数装饰器 递归 算法基础:二分查找.二维数组转换 正则表达式 常用模块学习 作业:计算器开发 实现加减乘除及拓号优先级解析 用户输入 1 - ...
- 算法基础:BFS和DFS的直观解释
算法基础:BFS和DFS的直观解释 https://cuijiahua.com/blog/2018/01/alogrithm_10.html 一.前言 我们首次接触 BFS 和 DFS 时,应该是在数 ...
随机推荐
- I NEED A OFFER! HDU - 1203
概率+0 1背包 要算成功的最大概率,那就是失败的最小概率,所以01背包直接让失败的概率最小就行了. 注意: 概率与概率之间是要相乘的,不是相加. #include<bits/stdc++.h& ...
- winfrom 基础
1 winfrom就是一种窗体开发端应用程序 2 窗体分类 1)记事本类:可以最大最小化,可以拖拽 窗体默 ...
- 关于JS垃圾回收机制
一.垃圾回收机制的必要性 由于字符串.对象和数组没有固定大小,所以当它们的大小已知时,才能对它们进行动态的存储分配.JavaScript程序每次创建字符串.数组或对象时,解释器都必须分配内存来存储那个 ...
- 操作google_sheets
起源:最近了使用flask和bootstrap写了测试小工具,数据全部使用excel存储,部署到测试环境. 问题:每次每个人在使用excel数据时都需要重新编辑好的excel通过upload按钮传到服 ...
- CVE-2019-1388:Windows UAC 本地提权复现
0x01 简介 用户帐户控制(User Account Control,简写作UAC)是微软公司在其Windows Vista及更高版本操作系统中采用的一种控制机制.其原理是通知用户是否对应用程序使用 ...
- C#反射(二)
长时间没有回顾反射知识了,今天就讲解一下反射的一般第二个用法. 二.对方法,属性等的反射 首先需要写一个测试类,生成.exe或.dll文件. class Test { public Test()/ ...
- df卡住的解决办法
在使用网络存储时,如果网络存储出问题.比如使用NFS,网络中断,df -h会卡住 情形一 ctrl+c是能取消中断的,这种情况算是比较幸运.使用mount查看有哪些挂载点,将其卸载即可. 情形二 ct ...
- 什么是CDN内容分发网络?【刘新宇】
CDN 使用第三方OSS服务的好处是集成了CDN服务,下面来了解一下什么是CDN. CDN 全称:Content Delivery Network或Content Distribute Network ...
- 曹工杂谈--只用一个命令,centos系统里装了啥软件,啥时候装的,全都清清楚楚
前言 一直以来,对linux的掌握就是半桶水的状态,经常yum装个东西,结果依赖一堆东西:然后再用源码装个东西,只知道make.make install,背后干了啥也不清楚了,卸载也不方便. 这几天工 ...
- CSRF与平行越权的区别
.CSRF攻击者不需要登录,越权攻击者也得登录,只是没有做针对性的控制: .CSRF攻击者自己不访问受攻击页面,诱导受害者在登录被攻击系统后点击攻击页面:越权攻击者可以直接访问受攻击页面: .CSRF ...