题意:无源无汇有上下界的可行流 模型

思路:首先将所有边的容量设为上界减去下界,然后对一个点i,设i的所有入边的下界和为to[i],所有出边的下界和为from[i],令它们的差为dif[i]=to[i]-from[i],根据流量平衡原理,让出边和入边的下界相抵消,如果dif[i]>0,说明入边把出边的下界抵消了,还剩下dif[i]的流量必须要流过来(否则不满足入边的下界条件),这时从源点向i连一条容量为dif[i]的边来表示即可,如果dif[i]<0,同理应该从i向汇点连一条容量为-dif[i]的边。最后对新建好的图跑一遍最大流,如果源点的所有出边都满流了说明原图有可行流,可行解为每条边在新图的流量加上它的下界。

  1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#pragma comment(linker, "/STACK:10240000")
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; #define X first
#define Y second
#define pb push_back
#define mp make_pair
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define fillarray(a, b) memcpy(a, b, sizeof(a)) typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull; #ifndef ONLINE_JUDGE
namespace Debug {
void RI(vector<int>&a,int n){a.resize(n);for(int i=;i<n;i++)scanf("%d",&a[i]);}
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?:-;
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?:-;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
}
#endif // ONLINE_JUDGE template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);} const double PI = acos(-1.0);
const int INF = 0x3f3f3f3f;
const double EPS = 1e-14; /* -------------------------------------------------------------------------------- */ const int maxn = 2e2 + ; struct Dinic {
private:
//const static int maxn = 1e3 + 7;
struct Edge {
int from, to, cap, least;
Edge(int u, int v, int w, int l): from(u), to(v), cap(w), least(l) {}
};
int s, t;
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn], cur[maxn]; bool bfs() {
memset(vis, , sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = ;
vis[s] = true;
while (!Q.empty()) {
int x = Q.front(); Q.pop();
for (int i = ; i < G[x].size(); i ++) {
Edge &e = edges[G[x][i]];
if (!vis[e.to] && e.cap) {
vis[e.to] = true;
d[e.to] = d[x] + ;
Q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x, int a) {
if (x == t || a == ) return a;
int flow = , f;
for (int &i = cur[x]; i < G[x].size(); i ++) {
Edge &e = edges[G[x][i]];
if (d[x] + == d[e.to] && (f = dfs(e.to, min(a, e.cap))) > ) {
e.cap -= f;
edges[G[x][i] ^ ].cap += f;
flow += f;
a -= f;
if (a == ) break;
}
}
return flow;
} public:
void clear() {
for (int i = ; i < maxn; i ++) G[i].clear();
edges.clear();
memset(d, , sizeof(d));
}
void add(int from, int to, int cap, int least) {
edges.push_back(Edge(from, to, cap, least));
edges.push_back(Edge(to, from, , least));
int m = edges.size();
G[from].push_back(m - );
G[to].push_back(m - );
} int solve(int s, int t) {
this->s = s; this->t = t;
int flow = ;
while (bfs()) {
memset(cur, , sizeof(cur));
flow += dfs(s, 1e9);
}
return flow;
} void out(int m) {
for (int i = ; i < m; i ++) {
printf("%d\n", edges[i << ].least + edges[i << | ].cap);
}
}
};
Dinic solver;
int tob[maxn], fromb[maxn]; int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
int n, m;
while (cin >> n >> m) {
solver.clear();
fillchar(tob, );
fillchar(fromb, );
for (int i = ; i < m; i ++) {
int u, v, b, c;
scanf("%d%d%d%d", &u, &v, &b, &c);
solver.add(u, v, c - b, b);
tob[v] += b;
fromb[u] += b;
}
int total = ;
for (int i = ; i <= n; i ++) {
int dif = tob[i] - fromb[i];
if (dif > ) solver.add(, i, dif, );
if (dif < ) solver.add(i, n + , - dif, );
total += abs(dif);
}
if (solver.solve(, n + ) != total / ) puts("NO");
else {
puts("YES");
solver.out(m);
}
}
return ;
}

[ACdream 1211 Reactor Cooling]无源无汇有上下界的可行流的更多相关文章

  1. SGU 194 Reactor Cooling Dinic求解 无源无汇有上下界的可行流

    题目链接 题意:有向图中有n(1 <= n <= 200)个点,无自环或者环的节点个数至少为3.给定每条边的最小流量和最大流量,问每条边的可行流量为多少? 思路:一般求解的网络流并不考虑下 ...

  2. 【HDU 4940】Destroy Transportation system(无源无汇带上下界可行流)

    Description Tom is a commander, his task is destroying his enemy’s transportation system. Let’s repr ...

  3. zoj3229 Shoot the Bullet(有源汇有上下界的最大流)

    题意: 一个屌丝给m个女神拍照,计划拍照n天,每一天屌丝给给定的C个女神拍照,每天拍照数不能超过D张,而且给每个女神i拍照有数量限制[Li,Ri],对于每个女神n天的拍照总和不能少于Gi,如果有解求屌 ...

  4. zoj 3229 有源汇有上下界的最大流模板题

    /*坑啊,pe的程序在zoj上原来是wa. 题目大意:一个屌丝给m个女神拍照.计划拍照n天,每一天屌丝最多个C个女神拍照,每天拍照数不能超过D张,并且给每一个女神i拍照有数量限制[Li,Ri], 对于 ...

  5. acdream 1211 Reactor Cooling 【边界网络流量 + 输出流量】

    称号:acdream 1211 Reactor Cooling 分类:无汇的有上下界网络流. 题意: 给n个点.及m根pipe,每根pipe用来流躺液体的.单向的.每时每刻每根pipe流进来的物质要等 ...

  6. Shoot the Bullet ZOJ - 3229 有源汇有上下界的最大流

    /** zoj提交评判不了,所以不知道代码正不正确.思路是应该没问题的.如果有不对的地方,请多指教. 题目:Shoot the Bullet ZOJ - 3229 链接:https://vjudge. ...

  7. BZOJ2055 80人环游世界 网络流 费用流 有源汇有上下界的费用流

    https://darkbzoj.cf/problem/2055 https://blog.csdn.net/Clove_unique/article/details/54864211 ←对有上下界费 ...

  8. sgu 194 无源汇有上下界的最大流(最大流模板dinic加优化)

    模板类型的题具体参考国家集训队论文:http://wenku.baidu.com/view/0f3b691c59eef8c75fbfb35c.html 参考博客:http://blog.csdn.ne ...

  9. bzoj 2406 二分+有源有汇上下界网络流可行流判定

    弱爆了,典型的行列建模方式,居然想不到,题做少了,总结少了...... 二分答案mid s----------------------->i行-----------------------> ...

随机推荐

  1. 小知识点:session的存放位置

    在php.ini里的配置session.save_path是注释掉的,那么Seesion保存的路径在不同类型操作系统保存在什么位置? Linux: /tmp 或 /var/lib/php/sessio ...

  2. 图解Knative核心组件Serving基础设计

    最近闲下来,打算把Knative的核心组件Serving给学习下,会继续采用k8s源码学习的方式,管中窥豹以小击大,学习serving的主要目标: 可观测性基础设施.自动伸缩.流量管理等核心组件的设计 ...

  3. 实例讲解Springboot以Template方式整合Redis及序列化问题

    1 简介 之前讲过如何通过Docker安装Redis,也讲了Springboot以Repository方式整合Redis,建议阅读后再看本文效果更佳: (1) Docker安装Redis并介绍漂亮的可 ...

  4. 形象地展示信号与系统中的一些细节和原理——卷积、复数、傅里叶变换、拉普拉斯变换、零极图唯一确定因果LTI系统

    看懂本文需要读者具备一定的微积分基础.至少开始学信号与系统了本文主要讲解欧拉公式.傅里叶变换的频率轴的负半轴的意义.傅里叶变换的缺陷.为什么因果LTI系统可以被零极图几乎唯一确定等等容易被初学者忽略但 ...

  5. 单图像三维重建、2D到3D风格迁移和3D DeepDream

    作者:Longway Date:2020-04-25 来源:单图像三维重建.2D到3D风格迁移和3D DeepDream 项目网址:http://hiroharu-kato.com/projects_ ...

  6. 词向量表示:word2vec与词嵌入

    在NLP任务中,训练数据一般是一句话(中文或英文),输入序列数据的每一步是一个字母.我们需要对数据进行的预处理是:先对这些字母使用独热编码再把它输入到RNN中,如字母a表示为(1, 0, 0, 0, ...

  7. TT企业微信社群辅助,企业微信社群辅助工具,允许批量添加好友,自动同意添加请求,自动回复消息

    TT企业微信社群辅助,企业微信社群辅助工具,允许批量添加好友,自动同意添加请求,自动回复消息 界面截图 TT企业微信社群辅助工具下载 链接: https://pan.baidu.com/s/1Y2An ...

  8. 《JAVA8开发指南》使用流式操作

    为什么需要流式操作 集合API是Java API中最重要的部分.基本上每一个java程序都离不开集合.尽管很重要,但是现有的集合处理在很多方面都无法满足需要. 一个原因是,许多其他的语言或者类库以声明 ...

  9. Lambda表达式最佳实践

    简介 Lambda表达式java 8引入的函数式编程框架.之前的文章中我们也讲过Lambda表达式的基本用法. 本文将会在之前的文章基础上更加详细的讲解Lambda表达式在实际应用中的最佳实践经验. ...

  10. 基于Apache+Tomcat实现负载均衡

    1.基于Apache和tomcat实现负载均衡 准备三个虚拟机一个安装Apache两个安装Tomcat 关闭防火墙 systemctl stop firewalld Iptabled -F Seten ...