[ACdream 1211 Reactor Cooling]无源无汇有上下界的可行流
题意:无源无汇有上下界的可行流 模型
思路:首先将所有边的容量设为上界减去下界,然后对一个点i,设i的所有入边的下界和为to[i],所有出边的下界和为from[i],令它们的差为dif[i]=to[i]-from[i],根据流量平衡原理,让出边和入边的下界相抵消,如果dif[i]>0,说明入边把出边的下界抵消了,还剩下dif[i]的流量必须要流过来(否则不满足入边的下界条件),这时从源点向i连一条容量为dif[i]的边来表示即可,如果dif[i]<0,同理应该从i向汇点连一条容量为-dif[i]的边。最后对新建好的图跑一遍最大流,如果源点的所有出边都满流了说明原图有可行流,可行解为每条边在新图的流量加上它的下界。
1 |
#pragma comment(linker, "/STACK:10240000") |
[ACdream 1211 Reactor Cooling]无源无汇有上下界的可行流的更多相关文章
- SGU 194 Reactor Cooling Dinic求解 无源无汇有上下界的可行流
题目链接 题意:有向图中有n(1 <= n <= 200)个点,无自环或者环的节点个数至少为3.给定每条边的最小流量和最大流量,问每条边的可行流量为多少? 思路:一般求解的网络流并不考虑下 ...
- 【HDU 4940】Destroy Transportation system(无源无汇带上下界可行流)
Description Tom is a commander, his task is destroying his enemy’s transportation system. Let’s repr ...
- zoj3229 Shoot the Bullet(有源汇有上下界的最大流)
题意: 一个屌丝给m个女神拍照,计划拍照n天,每一天屌丝给给定的C个女神拍照,每天拍照数不能超过D张,而且给每个女神i拍照有数量限制[Li,Ri],对于每个女神n天的拍照总和不能少于Gi,如果有解求屌 ...
- zoj 3229 有源汇有上下界的最大流模板题
/*坑啊,pe的程序在zoj上原来是wa. 题目大意:一个屌丝给m个女神拍照.计划拍照n天,每一天屌丝最多个C个女神拍照,每天拍照数不能超过D张,并且给每一个女神i拍照有数量限制[Li,Ri], 对于 ...
- acdream 1211 Reactor Cooling 【边界网络流量 + 输出流量】
称号:acdream 1211 Reactor Cooling 分类:无汇的有上下界网络流. 题意: 给n个点.及m根pipe,每根pipe用来流躺液体的.单向的.每时每刻每根pipe流进来的物质要等 ...
- Shoot the Bullet ZOJ - 3229 有源汇有上下界的最大流
/** zoj提交评判不了,所以不知道代码正不正确.思路是应该没问题的.如果有不对的地方,请多指教. 题目:Shoot the Bullet ZOJ - 3229 链接:https://vjudge. ...
- BZOJ2055 80人环游世界 网络流 费用流 有源汇有上下界的费用流
https://darkbzoj.cf/problem/2055 https://blog.csdn.net/Clove_unique/article/details/54864211 ←对有上下界费 ...
- sgu 194 无源汇有上下界的最大流(最大流模板dinic加优化)
模板类型的题具体参考国家集训队论文:http://wenku.baidu.com/view/0f3b691c59eef8c75fbfb35c.html 参考博客:http://blog.csdn.ne ...
- bzoj 2406 二分+有源有汇上下界网络流可行流判定
弱爆了,典型的行列建模方式,居然想不到,题做少了,总结少了...... 二分答案mid s----------------------->i行-----------------------> ...
随机推荐
- 小知识点:session的存放位置
在php.ini里的配置session.save_path是注释掉的,那么Seesion保存的路径在不同类型操作系统保存在什么位置? Linux: /tmp 或 /var/lib/php/sessio ...
- 图解Knative核心组件Serving基础设计
最近闲下来,打算把Knative的核心组件Serving给学习下,会继续采用k8s源码学习的方式,管中窥豹以小击大,学习serving的主要目标: 可观测性基础设施.自动伸缩.流量管理等核心组件的设计 ...
- 实例讲解Springboot以Template方式整合Redis及序列化问题
1 简介 之前讲过如何通过Docker安装Redis,也讲了Springboot以Repository方式整合Redis,建议阅读后再看本文效果更佳: (1) Docker安装Redis并介绍漂亮的可 ...
- 形象地展示信号与系统中的一些细节和原理——卷积、复数、傅里叶变换、拉普拉斯变换、零极图唯一确定因果LTI系统
看懂本文需要读者具备一定的微积分基础.至少开始学信号与系统了本文主要讲解欧拉公式.傅里叶变换的频率轴的负半轴的意义.傅里叶变换的缺陷.为什么因果LTI系统可以被零极图几乎唯一确定等等容易被初学者忽略但 ...
- 单图像三维重建、2D到3D风格迁移和3D DeepDream
作者:Longway Date:2020-04-25 来源:单图像三维重建.2D到3D风格迁移和3D DeepDream 项目网址:http://hiroharu-kato.com/projects_ ...
- 词向量表示:word2vec与词嵌入
在NLP任务中,训练数据一般是一句话(中文或英文),输入序列数据的每一步是一个字母.我们需要对数据进行的预处理是:先对这些字母使用独热编码再把它输入到RNN中,如字母a表示为(1, 0, 0, 0, ...
- TT企业微信社群辅助,企业微信社群辅助工具,允许批量添加好友,自动同意添加请求,自动回复消息
TT企业微信社群辅助,企业微信社群辅助工具,允许批量添加好友,自动同意添加请求,自动回复消息 界面截图 TT企业微信社群辅助工具下载 链接: https://pan.baidu.com/s/1Y2An ...
- 《JAVA8开发指南》使用流式操作
为什么需要流式操作 集合API是Java API中最重要的部分.基本上每一个java程序都离不开集合.尽管很重要,但是现有的集合处理在很多方面都无法满足需要. 一个原因是,许多其他的语言或者类库以声明 ...
- Lambda表达式最佳实践
简介 Lambda表达式java 8引入的函数式编程框架.之前的文章中我们也讲过Lambda表达式的基本用法. 本文将会在之前的文章基础上更加详细的讲解Lambda表达式在实际应用中的最佳实践经验. ...
- 基于Apache+Tomcat实现负载均衡
1.基于Apache和tomcat实现负载均衡 准备三个虚拟机一个安装Apache两个安装Tomcat 关闭防火墙 systemctl stop firewalld Iptabled -F Seten ...