题意:给定两个长度为M的数组a,b,对于一个1-M的排列,不妨设为P,如果对任意0<=i<M,都有a[i] <= b[P[i]],那么称为一种合法情况,对于一种合法情况,对所有0<=i<M,在n个长度为1的线段上的区间[a[i],b[p[i]]]涂上颜色,计X=没有涂颜色的最大连续长度,求x在所有合法情况中的期望。

思路:这个题想到了就是大水题了,可惜比赛的时候题目都没看。由于全排列P的存在,使得a数组可以对应b数组的任意一种“比较方式”,于是存在合法情况等价于存在一种b数组的全排列使得a[i]<=b[i]恒成立,由于全排列的任意性,不妨将a数组,b数组分别排序,如果对任意i,a[i]<=b[i]恒成立,那么合法情况存在。然后合法情况存在的基础上,考虑重新排列一下b数组,以得到其它的合法情况。在重排列过程中注意到,无论怎么重排,只要是合法情况,最后线段的涂色情况是一样的!于是对每一种合法情况,概率一样,X一样,所以期望等于任意一种合法情况的X。由于根据所有的i,把区间[a[i], b[i]]的线段涂上颜色,没涂颜色的连续段只可能出现在[b[i]+1,a[i+1]-1](至于为什么,画个图就清楚了,相当于左右边界分别递增的线段去覆盖),用这个去更新答案。

 #pragma comment(linker, "/STACK:102400000,102400000")

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <map>
#include <queue>
#include <deque>
#include <cmath>
#include <ctime>
#include <cctype>
#include <set>
#include <bitset>
#include <functional>
#include <numeric>
#include <stdexcept>
#include <utility>
#include <vector> using namespace std; #define mem0(a) memset(a, 0, sizeof(a))
#define mem_1(a) memset(a, -1, sizeof(a))
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define define_m int m = (l + r) >> 1
#define rep_up0(a, b) for (int a = 0; a < (b); a++)
#define rep_up1(a, b) for (int a = 1; a <= (b); a++)
#define rep_down0(a, b) for (int a = b - 1; a >= 0; a--)
#define rep_down1(a, b) for (int a = b; a > 0; a--)
#define all(a) (a).begin(), (a).end()
#define lowbit(x) ((x) & (-(x)))
#define constructInt4(name, a, b, c, d) name(int a = 0, int b = 0, int c = 0, int d = 0): a(a), b(b), c(c), d(d) {}
#define constructInt3(name, a, b, c) name(int a = 0, int b = 0, int c = 0): a(a), b(b), c(c) {}
#define constructInt2(name, a, b) name(int a = 0, int b = 0): a(a), b(b) {}
#define pchr(a) putchar(a)
#define pstr(a) printf("%s", a)
#define sstr(a) scanf("%s", a)
#define sint(a) scanf("%d", &a)
#define sint2(a, b) scanf("%d%d", &a, &b)
#define sint3(a, b, c) scanf("%d%d%d", &a, &b, &c)
#define pint(a) printf("%d\n", a)
#define test_print1(a) cout << "var1 = " << a << endl
#define test_print2(a, b) cout << "var1 = " << a << ", var2 = " << b << endl
#define test_print3(a, b, c) cout << "var1 = " << a << ", var2 = " << b << ", var3 = " << c << endl typedef long long LL;
typedef pair<int, int> pii;
typedef vector<int> vi; const int dx[] = {, , -, , , , -, -};
const int dy[] = {-, , , , , -, , - };
const int maxn = 1e5 + ;
const int md = ;
const int inf = 1e9 + ;
const LL inf_L = 1e18 + ;
const double pi = acos(-1.0);
const double eps = 1e-; template<class T>T gcd(T a, T b){return b==?a:gcd(b,a%b);}
template<class T>bool max_update(T &a,const T &b){if(b>a){a = b; return true;}return false;}
template<class T>bool min_update(T &a,const T &b){if(b<a){a = b; return true;}return false;}
template<class T>T condition(bool f, T a, T b){return f?a:b;}
template<class T>void copy_arr(T a[], T b[], int n){rep_up0(i,n)a[i]=b[i];}
int make_id(int x, int y, int n) { return x * n + y; } int a[], b[]; int main() {
//freopen("in.txt", "r", stdin);
int T, n, m;
cin >> T;
while (T --) {
cin >> n >> m;
rep_up0(i, m) {
sint(a[i]);
}
rep_up0(i, m) {
sint(b[i]);
}
sort(a, a + m);
sort(b, b + m);
bool ok = true;
rep_up0(i, m) {
if (a[i] > b[i]) {
ok = false;
break;
}
}
if (!ok) {
puts("Stupid BrotherK!");
continue;
}
int ans = a[] - ;
rep_up0(i, m - ) {
max_update(ans, a[i + ] - b[i] - );
}
max_update(ans, n - b[m - ]);
printf("%d.000000\n", ans);
}
return ;
}

[hdu5216]排序的更多相关文章

  1. javascript中的Array对象 —— 数组的合并、转换、迭代、排序、堆栈

    Array 是javascript中经常用到的数据类型.javascript 的数组其他语言中数组的最大的区别是其每个数组项都可以保存任何类型的数据.本文主要讨论javascript中数组的声明.转换 ...

  2. iOS可视化动态绘制八种排序过程

    前面几篇博客都是关于排序的,在之前陆陆续续发布的博客中,我们先后介绍了冒泡排序.选择排序.插入排序.希尔排序.堆排序.归并排序以及快速排序.俗话说的好,做事儿要善始善终,本篇博客就算是对之前那几篇博客 ...

  3. JavaScript实现常用的排序算法

    ▓▓▓▓▓▓ 大致介绍 由于最近要考试复习,所以学习js的时间少了 -_-||,考试完还会继续的努力学习,这次用原生的JavaScript实现以前学习的常用的排序算法,有冒泡排序.快速排序.直接插入排 ...

  4. [C#][算法] 用菜鸟的思维学习算法 -- 马桶排序、冒泡排序和快速排序

    用菜鸟的思维学习算法 -- 马桶排序.冒泡排序和快速排序 [博主]反骨仔 [来源]http://www.cnblogs.com/liqingwen/p/4994261.html  目录 马桶排序(令人 ...

  5. 算法与数据结构(十三) 冒泡排序、插入排序、希尔排序、选择排序(Swift3.0版)

    本篇博客中的代码实现依然采用Swift3.0来实现.在前几篇博客连续的介绍了关于查找的相关内容, 大约包括线性数据结构的顺序查找.折半查找.插值查找.Fibonacci查找,还包括数结构的二叉排序树以 ...

  6. 算法与数据结构(七) AOV网的拓扑排序

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

  7. 使用po模式读取豆瓣读书最受关注的书籍,取出标题、评分、评论、题材 按评分从小到大排序并输出到txt文件中

    #coding=utf-8from time import sleepimport unittestfrom selenium import webdriverfrom selenium.webdri ...

  8. javascript排序

    利用array中的sort()排序 w3cfunction sortNumber(a,b) { return a - b } var arr = new Array(6) arr[0] = " ...

  9. iOS自定义model排序

    在开发过程中,可能需要按照model的某种属性排序. 1.自定义model @interface Person : NSObject @property (nonatomic,copy) NSStri ...

随机推荐

  1. UML 建模工具的安装与使用

    一. 实验目的1) 学习使用 EA(Enterprise Architect) 开发环境创建模型的一般方法: 2) 理解 EA 界面布局和元素操作的一般技巧: 3) 熟悉 UML 中的各种图的建立和表 ...

  2. 解决Lost connection to MySQL server during query错误方法/Mysql关闭严格模式

    使用Navicat 导入MySQL数据库的时候,出现了一个严重的错误,Lost connection to MySQL server during query,字面意思就是在查询过程中丢失连接到MyS ...

  3. java中ThreadLocalRandom的使用

    java中ThreadLocalRandom的使用 在java中我们通常会需要使用到java.util.Random来便利的生产随机数.但是Random是线程安全的,如果要在线程环境中的话就有可能产生 ...

  4. 【集群实战】NFS服务常见故障排查和解决方法

    NFS,全名叫Network File System,中文叫网络文件系统,是Linux.UNIX系统的分布式文件系统的一个组成部分,可实现在不同网络上共享远程文件系统. NFS由Sun公司开发,目前已 ...

  5. LightOJ 1287 Where to Run(期望)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1287 题意:给定一个n个点的无向图(0到n-1),你开始在0.你开始遍历这个图 ...

  6. [转]Git详解之四 服务器上的Git

    服务器上的 Git 到目前为止,你应该已经学会了使用 Git 来完成日常工作.然而,如果想与他人合作,还需要一个远程的 Git 仓库.尽管技术上可以从个人的仓库里推送和拉取修改内容,但我们不鼓励这样做 ...

  7. 关于:Express会被Koa2取代吗?

    知会上看到有个问题<Express会被Koa2取代吗?>.刚好对Express.koa有点小研究,于是简单回答了一下. 1.先说结论 目前没有看到Express会被koa2取代的迹象. 目 ...

  8. HR问了我朋友什么是简单工厂模式,竟被质疑是否学过设计模式,是否是计算机专业?

    越是简单的东西,越是容易被忽略,我来带你们好复习一下! 简单工厂模式 简单工厂模式也被称为静态工厂模式;使用简单工厂模式可以将产品的"消费"和生产完全分开,客户端只需要知道自己需要 ...

  9. 数学--数论---P4718 Pollard-Rho算法 大数分解

    P4718 [模板]Pollard-Rho算法 题目描述 MillerRabin算法是一种高效的质数判断方法.虽然是一种不确定的质数判断法,但是在选择多种底数的情况下,正确率是可以接受的.Pollar ...

  10. P2290 [HNOI2004]树的计数(bzoj1211)

    洛谷P2290 [HNOI2004]树的计数 bzoj1211 [HNOI2004]树的计数 Description 一个有\(n\)个结点的树,设它的结点分别为\(v_1,v_2,\cdots, v ...