吴裕雄--天生自然 R语言开发学习:时间序列(续二)
















#-----------------------------------------#
# R in Action (2nd ed): Chapter 15 #
# Time series #
# requires forecast, tseries packages #
# install.packages("forecast", "tseries") #
#-----------------------------------------# par(ask=TRUE) # Listing 15.1 - Creating a time series object in R
sales <- c(18, 33, 41, 7, 34, 35, 24, 25, 24, 21, 25, 20,
22, 31, 40, 29, 25, 21, 22, 54, 31, 25, 26, 35)
tsales <- ts(sales, start=c(2003, 1), frequency=12)
tsales
plot(tsales) start(tsales)
end(tsales)
frequency(tsales) tsales.subset <- window(tsales, start=c(2003, 5), end=c(2004, 6))
tsales.subset # Listing 15.2 - Simple moving averages
library(forecast)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
ylim <- c(min(Nile), max(Nile))
plot(Nile, main="Raw time series")
plot(ma(Nile, 3), main="Simple Moving Averages (k=3)", ylim=ylim)
plot(ma(Nile, 7), main="Simple Moving Averages (k=7)", ylim=ylim)
plot(ma(Nile, 15), main="Simple Moving Averages (k=15)", ylim=ylim)
par(opar) # Listing 15.3 - Seasonal decomposition using slt()
plot(AirPassengers)
lAirPassengers <- log(AirPassengers)
plot(lAirPassengers, ylab="log(AirPassengers)")
fit <- stl(lAirPassengers, s.window="period")
plot(fit)
fit$time.series
exp(fit$time.series) par(mfrow=c(2,1))
library(forecast)
monthplot(AirPassengers, xlab="", ylab="")
seasonplot(AirPassengers, year.labels="TRUE", main="")
par(opar) # Listing 15.4 - Simple exponential smoothing
library(forecast)
fit <- HoltWinters(nhtemp, beta=FALSE, gamma=FALSE)
fit forecast(fit, 1) plot(forecast(fit, 1), xlab="Year",
ylab=expression(paste("Temperature (", degree*F,")",)),
main="New Haven Annual Mean Temperature") accuracy(fit) # Listing 15.5 - Exponential smoothing with level, slope, and seasonal components
fit <- HoltWinters(log(AirPassengers))
fit accuracy(fit) pred <- forecast(fit, 5)
pred
plot(pred, main="Forecast for Air Travel",
ylab="Log(AirPassengers)", xlab="Time")
pred$mean <- exp(pred$mean)
pred$lower <- exp(pred$lower)
pred$upper <- exp(pred$upper)
p <- cbind(pred$mean, pred$lower, pred$upper)
dimnames(p)[[2]] <- c("mean", "Lo 80", "Lo 95", "Hi 80", "Hi 95")
p # Listing 15.6 - Automatic exponential forecasting with ets()
library(forecast)
fit <- ets(JohnsonJohnson)
fit
plot(forecast(fit), main="Johnson and Johnson Forecasts",
ylab="Quarterly Earnings (Dollars)", xlab="Time") # Listing 15.7 - Transforming the time series and assessing stationarity
library(forecast)
library(tseries)
plot(Nile)
ndiffs(Nile)
dNile <- diff(Nile)
plot(dNile)
adf.test(dNile) # Listing 15.8 - Fit an ARIMA model
fit <- arima(Nile, order=c(0,1,1))
fit
accuracy(fit) # Listing 15.9 - Evaluating the model fit
qqnorm(fit$residuals)
qqline(fit$residuals)
Box.test(fit$residuals, type="Ljung-Box") # Listing 15.10 - Forecasting with an ARIMA model
forecast(fit, 3)
plot(forecast(fit, 3), xlab="Year", ylab="Annual Flow") # Listing 15.11 - Automated ARIMA forecasting
library(forecast)
fit <- auto.arima(sunspots)
fit
forecast(fit, 3)
accuracy(fit)
吴裕雄--天生自然 R语言开发学习:时间序列(续二)的更多相关文章
- 吴裕雄--天生自然 R语言开发学习:R语言的安装与配置
下载R语言和开发工具RStudio安装包 先安装R
- 吴裕雄--天生自然 R语言开发学习:数据集和数据结构
数据集的概念 数据集通常是由数据构成的一个矩形数组,行表示观测,列表示变量.表2-1提供了一个假想的病例数据集. 不同的行业对于数据集的行和列叫法不同.统计学家称它们为观测(observation)和 ...
- 吴裕雄--天生自然 R语言开发学习:导入数据
2.3.6 导入 SPSS 数据 IBM SPSS数据集可以通过foreign包中的函数read.spss()导入到R中,也可以使用Hmisc 包中的spss.get()函数.函数spss.get() ...
- 吴裕雄--天生自然 R语言开发学习:使用键盘、带分隔符的文本文件输入数据
R可从键盘.文本文件.Microsoft Excel和Access.流行的统计软件.特殊格 式的文件.多种关系型数据库管理系统.专业数据库.网站和在线服务中导入数据. 使用键盘了.有两种常见的方式:用 ...
- 吴裕雄--天生自然 R语言开发学习:R语言的简单介绍和使用
假设我们正在研究生理发育问 题,并收集了10名婴儿在出生后一年内的月龄和体重数据(见表1-).我们感兴趣的是体重的分 布及体重和月龄的关系. 可以使用函数c()以向量的形式输入月龄和体重数据,此函 数 ...
- 吴裕雄--天生自然 R语言开发学习:基础知识
1.基础数据结构 1.1 向量 # 创建向量a a <- c(1,2,3) print(a) 1.2 矩阵 #创建矩阵 mymat <- matrix(c(1:10), nrow=2, n ...
- 吴裕雄--天生自然 R语言开发学习:图形初阶(续二)
# ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...
- 吴裕雄--天生自然 R语言开发学习:图形初阶(续一)
# ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...
- 吴裕雄--天生自然 R语言开发学习:图形初阶
# ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...
- 吴裕雄--天生自然 R语言开发学习:基本图形(续二)
#---------------------------------------------------------------# # R in Action (2nd ed): Chapter 6 ...
随机推荐
- vzray上网教程
1.首先按照之前的教程在chrome里安装插件-Proxy-SwitchyOmega-Chromium-2.5.15 2.打开 vzray-v3.11-windows-64,打开 3.在chrome ...
- 编程作业3.1:Multi-class classification(One-vs-all)
题目: 在本次练习中,你将使用逻辑回归和神经网络来识别手写数字(从0到9). 今天,自动手写数字识别被广泛使用,从识别信封上的邮政编码到识别银行支票上的金额.这个练习将向你展示如何将你所学的方法用于此 ...
- 黑马_13 Spring Boot:01.spring boot 介绍&&02.spring boot 入门
13 Spring Boot: 01.spring boot 介绍&&02.spring boot 入门 04.spring boot 配置文件 SpringBoot基础 1.1 原有 ...
- [PHP防火墙]输入内容存在危险字符,安全起见,已被本站拦截
之前在很多的网站都看到了360webscan的攻击拦截脚本,正好分析并学习一下. 下载地址:http ://webscan.360.cn/protect/down?domain = blog.dybo ...
- java内存区域与内存溢出异常(2)
3.本地方法栈 本地方法栈与虚拟机栈作用相同,不同的是虚拟机栈为java方法服务,本地方法栈为native方法服务,本地方法栈会抛出StackOverFlowError和OutOfMemoryErro ...
- 了解Kafka生产者
了解Kafka生产者 之前对kafka的整体架构有浅显的了解,这次正好有时间,准备深入了解一下kafka,首先先从数据的生产者开始吧. 生产者的整体架构 可以看到整个生产者进程主要由两个线程进 ...
- Web API接口
Web API接口 一.什么是Web API接口 通过网络,规定了前后台信息交互规则的url链接,也就是前后台信息交互的媒介 Web API接口和一般的url链接还是有区别的,Web API接口简单概 ...
- 9. Dockerfile 实际操作 (把 python app 打包成 image 并运行)
1. 创建并进入 flask-hello-world mkdir flask-hello-world && cd flask-hello-world 2. 编写 python 文件 a ...
- 数学之美_正态分布(Python代码)
1 在概率统计中,我们针对某个事件当中各个样本发生的概率的频率进行统计,用一个函数的形式写出的这个概率的频率函数就叫做分布函数. 2 分布函数顾名思义,就是某个连续事件发生频率的汇总表示.再直白一点儿 ...
- HTTP Error 502.5 - Process Failure 解决方案
.netcore 2.1.4的程序部署到IIS后报以下错误: ======================================================= HTTP Error 50 ...