目标

在本章中,我们将学习直方图反投影。

理论

这是由Michael J. SwainDana H. Ballard在他们的论文《通过颜色直方图索引》中提出的。

用简单的话说是什么意思?它用于图像分割或在图像中查找感兴趣的对象。简而言之,它创建的图像大小与输入图像相同(但只有一个通道),其中每个像素对应于该像素属于我们物体的概率。用更简单的话来说,与其余部分相比,输出图像将在可能有对象的区域具有更多的白色值。好吧,这是一个直观的解释。(我无法使其更简单)。直方图反投影与camshift算法等配合使用。

我们该怎么做呢?我们创建一个图像的直方图,其中包含我们感兴趣的对象(在我们的示例中是背景,离开播放器等)。对象应尽可能填充图像以获得更好的效果。而且颜色直方图比灰度直方图更可取,因为对象的颜色对比灰度强度是定义对象的好方法。然后,我们将该直方图“反投影”到需要找到对象的测试图像上,换句话说,我们计算出属于背景的每个像素的概率并将其显示出来。在适当的阈值下产生的输出使我们仅获得背景。

Numpy中的算法

  1. 首先,我们需要计算我们要查找的对象(使其为“ M”)和要搜索的图像(使其为“ I”)的颜色直方图。
import numpy as np
import cv2 as cvfrom matplotlib import pyplot as plt
#roi是我们需要找到的对象或对象区域
roi = cv.imread('rose_red.png')
hsv = cv.cvtColor(roi,cv.COLOR_BGR2HSV)
#目标是我们搜索的图像
target = cv.imread('rose.png')
hsvt = cv.cvtColor(target,cv.COLOR_BGR2HSV)
# 使用calcHist查找直方图。也可以使用np.histogram2d完成
M = cv.calcHist([hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] )
I = cv.calcHist([hsvt],[0, 1], None, [180, 256], [0, 180, 0, 256] )
  1. 求出比值R=MIR = \frac{M}{I}R=IM​。然后反向投影R,即使用R作为调色板,并以每个像素作为其对应的目标概率创建一个新图像。即B(x,y) = R[h(x,y),s(x,y)] 其中h是色调,s是像素在(x,y)的饱和度。之后,应用条件B(x,y)=min[B(x,y),1]B(x,y) = min[B(x,y), 1]B(x,y)=min[B(x,y),1]。
h,s,v = cv.split(hsvt)
B = R[h.ravel(),s.ravel()]
B = np.minimum(B,1)
B = B.reshape(hsvt.shape[:2])
  1. 现在对圆盘应用卷积,B=D∗BB = D \ast BB=D∗B,其中D是圆盘内核。
disc = cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
cv.filter2D(B,-1,disc,B)
B = np.uint8(B)
cv.normalize(B,B,0,255,cv.NORM_MINMAX)
  1. 现在最大强度的位置给了我们物体的位置。如果我们期望图像中有一个区域,则对合适的值进行阈值处理将获得不错的结果。
ret,thresh = cv.threshold(B,50,255,0)

就是这样!!

OpenCV的反投影

OpenCV提供了一个内建的函数cv.calcBackProject()。它的参数几乎与cv.calchist()函数相同。它的一个参数是直方图,也就是物体的直方图,我们必须找到它。另外,在传递给backproject函数之前,应该对对象直方图进行归一化。它返回概率图像。然后我们用圆盘内核对图像进行卷积并应用阈值。下面是我的代码和结果:

import numpy as np
import cv2 as cv
roi = cv.imread('rose_red.png')
hsv = cv.cvtColor(roi,cv.COLOR_BGR2HSV)
target = cv.imread('rose.png')
hsvt = cv.cvtColor(target,cv.COLOR_BGR2HSV)
# 计算对象的直方图
roihist = cv.calcHist([hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] )
# 直方图归一化并利用反传算法
cv.normalize(roihist,roihist,0,255,cv.NORM_MINMAX)
dst = cv.calcBackProject([hsvt],[0,1],roihist,[0,180,0,256],1)
# 用圆盘进行卷积
disc = cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
cv.filter2D(dst,-1,disc,dst)
# 应用阈值作与操作
ret,thresh = cv.threshold(dst,50,255,0)
thresh = cv.merge((thresh,thresh,thresh))
res = cv.bitwise_and(target,thresh)
res = np.vstack((target,thresh,res))
cv.imwrite('res.jpg',res)

以下是我处理过的一个示例。我将蓝色矩形内的区域用作示例对象,我想提取整个地面。

附加资源

  1. “Indexing via color histograms”, Swain, Michael J. , Third international conference on computer vision,1990.

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

OpenCV中文官方文档:

http://woshicver.com/

OpenCV-Python 直方图-4:直方图反投影 | 二十九的更多相关文章

  1. Python学习之旅(二十九)

    Python基础知识(28):常用第三方模块 一.Pillow PIL(Python Imaging Library):提供了强大的图像操作功能,可以通过简单的代码完成复杂的图像处理,是Python平 ...

  2. 第三百二十九节,web爬虫讲解2—urllib库爬虫—ip代理—用户代理和ip代理结合应用

    第三百二十九节,web爬虫讲解2—urllib库爬虫—ip代理 使用IP代理 ProxyHandler()格式化IP,第一个参数,请求目标可能是http或者https,对应设置build_opener ...

  3. 剑指Offer(二十九):最小的K个数

    剑指Offer(二十九):最小的K个数 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.net/baid ...

  4. Bootstrap <基础二十九>面板(Panels)

    Bootstrap 面板(Panels).面板组件用于把 DOM 组件插入到一个盒子中.创建一个基本的面板,只需要向 <div> 元素添加 class .panel 和 class .pa ...

  5. Web 开发人员和设计师必读文章推荐【系列二十九】

    <Web 前端开发精华文章推荐>2014年第8期(总第29期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...

  6. WCF技术剖析之二十九:换种不同的方式调用WCF服务[提供源代码下载]

    原文:WCF技术剖析之二十九:换种不同的方式调用WCF服务[提供源代码下载] 我们有两种典型的WCF调用方式:通过SvcUtil.exe(或者添加Web引用)导入发布的服务元数据生成服务代理相关的代码 ...

  7. VMwarevSphere 服务器虚拟化之二十九 桌面虚拟化之安装View副本服务器

    VMwarevSphere 服务器虚拟化之二十九  桌面虚拟化之安装View副本服务器 VMware View中高可用性可是一个必须要考虑的问题.在整个虚拟桌面环境中View Connection S ...

  8. Bootstrap入门(二十九)JS插件6:弹出框

    Bootstrap入门(二十九)JS插件6:弹出框 加入小覆盖的内容,像在iPad上,用于存放非主要信息 弹出框是依赖于工具提示插件的,那它也和工具提示是一样的,是需要初始化才能够使用的 首先我们引入 ...

  9. mysql进阶(二十九)常用函数

    mysql进阶(二十九)常用函数 一.数学函数 ABS(x) 返回x的绝对值 BIN(x) 返回x的二进制(OCT返回八进制,HEX返回十六进制) CEILING(x) 返回大于x的最小整数值 EXP ...

随机推荐

  1. css雪碧图压缩

    cssgaga下载地址 链接: https://pan.baidu.com/s/1Q9xH_XzumIc7vTLCZ3tr5A 提取码: stqe CssGaga功能特性 合并import的CSS文件 ...

  2. in和exists比较

    in是把外表和内表作hash 连接,而exists 是对外表作loop 循环,每次loop 循环再对内表进行查询. 一直以来认为exists 比in 效率高的说法是不准确的.如果查询的两个表大小相当, ...

  3. 7-36 jmu-python-统计字符个数 (10 分)

    输入一个字符串,统计其中数字字符及小写字符的个数 输入格式: 输入一行字符串 输出格式: 共有?个数字,?个小写字符,?填入对应数量 输入样例: helo134ss12 输出样例: 共有5个数字,6个 ...

  4. Mysql8以上需要指定时区serverTimezone

    JDBC连接Mysql8以下 com.mysql.jdbc.Driver url=jdbc:mysql://localhost:3306/test?useUnicode=true&charac ...

  5. Kali虚拟机的扩容经历

    Kali虚拟机的扩容经历 0x01 起因 更新了一下软件包,竟然提示我空间不足. 升级了 687 个软件包,新安装了 82 个软件包,要卸载 0 个软件包,有 8 个软件包未被升级. 需要下载 1,5 ...

  6. Failed to open the key database file. c;\\User\\w\\Destop\\SecureCRT_FX6.5.3\\Config\\KnowHosts\\Hostsmap.txt这个问题的解决方法

    1.首先将这段错误在百度翻译上面查询一下,是什么意思,查询结果如下: 打开密钥数据库文件失败.C:\用户\ w \平台\ securecrt_fx6.5.3 \\ \\ \\ hostsmap.txt ...

  7. yuchuan_Linux_C 编程之七系统IO函数

    一.整体大纲 二. 系统IO函数 1. 一些概念    文件描述符     PCB     C库函的IO缓冲区 1) 文件描述符            int 类型            一个进程最多 ...

  8. 论JS函数传参时:值传递与引用传递的区别

    什么是值传递:值传递是指在调用函数时将实际参数(实参)复制一份传递到函数中,这样在函数中如果对参数进行修改,将不会影响到实际参数. 值传递的总结:也就是说,将实参复制到函数中的这个过程叫值传递 什么是 ...

  9. js之重写原型对象

    “实例中的指针仅指向原型,而不是指向构造函数”. “重写原型对象切断了现有原型与任何之前已经存在的对象实例之间的关系:它们引用的仍然是最初的原型”.——前记 var fun = function(){ ...

  10. 7种你应该知道的JavaScript常见的错误

    转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 原文出处:https://blog.bitsrc.io/types-of-native-errors-in- ...