Dijkstra与Floyd算法
1. Dijkstra算法
1.1 定义概览
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。
问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)
1.2 算法描述
1)算法思想:
设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:
a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
执行动画过程如下图
1.3 算法代码实现
![](http://common.cnblogs.com/images/copycode.gif)
const int MAXINT = ;
const int MAXNUM = ;
int dist[MAXNUM];
int prev[MAXNUM]; int A[MAXUNM][MAXNUM]; void Dijkstra(int v0)
{
bool S[MAXNUM]; // 判断是否已存入该点到S集合中
int n=MAXNUM;
for(int i=; i<=n; ++i)
{
dist[i] = A[v0][i];
S[i] = false; // 初始都未用过该点
if(dist[i] == MAXINT)
prev[i] = -;
else
prev[i] = v0;
}
dist[v0] = ;
S[v0] = true;
for(int i=; i<=n; i++)
{
int mindist = MAXINT;
int u = v0; // 找出当前未使用的点j的dist[j]最小值
for(int j=; j<=n; ++j)
if((!S[j]) && dist[j]<mindist)
{
u = j; // u保存当前邻接点中距离最小的点的号码
mindist = dist[j];
}
S[u] = true;
for(int j=; j<=n; j++)
if((!S[j]) && A[u][j]<MAXINT)
{
if(dist[u] + A[u][j] < dist[j]) //在通过新加入的u点路径找到离v0点更短的路径
{
dist[j] = dist[u] + A[u][j]; //更新dist
prev[j] = u; //记录前驱顶点
}
}
}
}
![](http://common.cnblogs.com/images/copycode.gif)
1.4 算法实例
先给出一个无向图
用Dijkstra算法找出以A为起点的单源最短路径步骤如下
2. Floyd算法
2.1 定义概述
Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。
2.2 算法描述
1)算法思想原理:
Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)
从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
2).算法描述:
a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。
3).Floyd算法过程矩阵的计算----十字交叉法
方法:两条线,从左上角开始计算一直到右下角 如下所示
给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点
相应计算方法如下:
最后A3即为所求结果
2.3 算法代码实现
![](http://common.cnblogs.com/images/copycode.gif)
typedef struct
{
char vertex[VertexNum]; //顶点表
int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表
int n,e; //图中当前的顶点数和边数
}MGraph;
void Floyd(MGraph g)
{
int A[MAXV][MAXV];
int path[MAXV][MAXV];
int i,j,k,n=g.n;
for(i=;i<n;i++)
for(j=;j<n;j++)
{
A[i][j]=g.edges[i][j];
path[i][j]=-;
}
for(k=;k<n;k++)
{
for(i=;i<n;i++)
for(j=;j<n;j++)
if(A[i][j]>(A[i][k]+A[k][j]))
{
A[i][j]=A[i][k]+A[k][j];
path[i][j]=k;
}
}
}
![](http://common.cnblogs.com/images/copycode.gif)
算法时间复杂度:O(n3)
转载于https://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html
Dijkstra与Floyd算法的更多相关文章
- 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法
图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...
- Dijkstra and Floyd算法
Dijkstra算法 算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集 ...
- Dijkstra和Floyd算法
#include #include #include #define Infinity 999 //最大值 #define Max_Vertex_Num 20 //顶点数最多为20 #define L ...
- 图的最短路径——dijkstra算法和Floyd算法
dijkstra算法 求某一顶点到其它各个顶点的最短路径:已知某一顶点v0,求它顶点到其它顶点的最短路径,该算法按照最短路径递增的顺序产生一点到其余各顶点的所有最短路径. 对于图G={V,{E}};将 ...
- (最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法模板的整理与介绍
这一篇博客以一些OJ上的题目为载体.整理一下最短路径算法.会陆续的更新... 一.多源最短路算法--floyd算法 floyd算法主要用于求随意两点间的最短路径.也成最短最短路径问题. 核心代码: / ...
- 最短路径—Dijkstra算法和Floyd算法
原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...
- 最短路径---Dijkstra/Floyd算法
1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...
- 最短路径—大话Dijkstra算法和Floyd算法
Dijkstra算法 算法描述 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , ...
- Dijkstra 算法、Kruskal 算法、Prim算法、floyd算法
1.dijkstra算法 算最短路径的,算法解决的是有向图中单个源点到其他顶点的最短路径问题. 初始化n*n的数组. 2.kruskal算法 算最小生成树的,按权值加入 3.Prim算法 类似dijk ...
随机推荐
- F. Fairness 分硬币最大差值最小
F. Fairness time limit per test 2.0 s memory limit per test 64 MB input standard input output standa ...
- UVA - 122 Trees on the level (二叉树的层次遍历)
题意:给定结点值和从根结点到该结点的路径,若根到某个叶结点路径上有的结点输入中未给出或给出超过一次,则not complete,否则层次遍历输出所有结点. 分析:先建树,建树的过程中,沿途结点都申请了 ...
- SQL语句--分组统计
一.教师号 星期号 是否有课1 2 有1 3 有2 1 有3 2 有`1 2 有写一条sql语句让你变为这样的表教师号 星期一 星期二 星期三1 2 12 13 1各星期下的数字表示:对应的教师在星期 ...
- 福州大学2020年春软工实践W班第二次作业
作业描述 这个作业属于哪个课程 福州大学2020年春软工实践W班 这个作业要求在哪里 寒假作业(2/2) 这个作业的目标 开发一个疫情统计程序 作业正文 福州大学2020年春软工实践W班第二次作业 其 ...
- nginx proxy_pass解释
在当前大部分对外提供的web服务会使用nginx做负载均衡,日常相关的proxy_pass设置有: 以http://192.168.1.101/proxy/test.html进行访问为例子 第一种: ...
- Java关键字与标识符
什么是关键字? Java语言赋予特定含义的单词被称为关键字,比如在HelloWorld中的class.public.static.void. 关键字的特点: 完全小写的字母. 在增强版的记事本当中(例 ...
- 139-PHP static后期静态绑定(二)
<?php class test{ //创建test类 public function __construct(){ static::getinfo(); //后期静态绑定 } public s ...
- Spring Cloud 支付宝支付的流程
沙箱环境又称沙盘,为了开发与调试所提供的环境,它与生产环境互相隔离,但具有生产环境几乎完全相同的功能蚂蚁金服开放平台——开发者中心1.https://openhome.alipay.com2.提供的调 ...
- 摩尔纹滤镜moir
function moir(imgData) { var width = imgData.width, height = imgData.height, pixelData = imgData.dat ...
- hdu 2583 How far away ? 离线算法 带权求最近距离
How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...