FMT/FWT学习笔记
FMT/FWT学习笔记
FMT/FWT是算法竞赛中求or/and/xor卷积的算法,数据处理中也有应用。
网上的命名方法有很多。
这里我们选这个博客的,把AND/OR命名为FMT,XOR命名为FWT
如果是整数,我们认为\(\cup\)和\(\cap\)运算是二进制下的,也就是\(\text{|和&}\),这可以帮我们理解之后的集合幂级数。
FMT 快速莫比乌斯变换 OR卷积
与FMT可以求出
\]
因为前缀的并是前缀,容易得到过程是把A、B求子集前缀和,得到FMTor数组
\]
与FFT类似,FMTor数组直接乘起来就得到了C的FMTor数组,证明如下:
\]
最后换回去(子集和变原数组)就得到了C
至于具体怎么算前缀和,挂张图,想必大家见过很多次了吧(箭头表示加法)
如上图,讨论这一层的1在不在下一个集合即可。
代码:
const int N = 2e5+200;
const ll mod = 998244353;
int a[N];
void FMTor(int *a,int n,int opt){
for(int l=2;l<=n;l<<=1){
int m=l>>1;
for(int *g=a;g!=a+n;g+=l){
for(int k=0;k<m;k++){
if(opt==1) g[k+m]=(g[k+m]+g[k])%mod;
else g[k+m]=(g[k+m]-g[k]+mod)%mod;
}
}
}
}
跟FFT非常的像...
AND卷积
\]
然后猜测FMTand为后缀和(后缀的交为后缀),
\]
同样的,证明:
\]
和OR是不是有几分相似?
const int N = 2e5+200;
const ll mod = 998244353;
int a[N];
void FMTand(int *a,int n,int opt){
for(int l=2;l<=n;l<<=1){
int m=l>>1;
for(int *g=a;g!=a+n;g+=l){
for(int k=0;k<m;k++){
if(opt==1) g[k]=(g[k]+g[k+m])%mod;
else g[k]=(g[k]-g[k+m]+mod)%mod;
}
}
}
}
快速沃尔什变换(FWT/XOR卷积)
这个稍微难点
我们要求
\]
这里的FWT数组不是那么显然,考虑构造。
由于线性相关,令
\]
那么
\]
带入C的定义,
\]
对比系数,
\]
异或有一系列性质:
\((j\cap x)\oplus (k\cap x)=(j\oplus k)\cap x\)
不知道这个的可以讨论一波:在第\(i\)位,
\[\begin{array}{|c|c|c|c|c|c|c|c|}j & k &x &j\cap x &k\cap x&(j\cap x)\oplus (k\cap x)&j \oplus k&(j\oplus k)\cap x\\0&0&0&0&0&0&0&0\\0&0&1&0&0&0&0&0\\0&1&0&0&0&0&1&0\\0&1&1&0&1&1&1&1\\1&0&0&0&0&0&1&0\\1&0&1&1&0&1&1&1\\1&1&0&1&1&0&0&0\\1&1&1&1&1&0&0&0\\\end{array}
\]异或前后1的个数奇偶性不变(对吧)
那么我们定义\(|x|\)为二进制下集合大小,即1的个数,g就可以赋值了
\]
\]
考虑怎么递推算这个东西,考虑加不加上区间长度i
由于枚举i为2的次幂从小到大,新加上i集合大小一定加一,系数乘负一,否则不变。
那么有:
\]
反过来,解方程可以得到
\]
代码:
const int N = 2e5+200;
const int mod = 998244353;
const int inv2 = 499122177;
int a[N];
void FWT(int *a,int n,int opt){
for(int l=2;l<=n;l<<=1){
int m=l>>1;
for(int *g=a;g!=a+n;g+=l){
for(int k=0;k<m;k++){
ll t=g[k+m];
g[k+m]=(g[k]-g[k+m]+mod)%mod;
g[k]=(g[k]+t)%mod;//草,有蝴蝶变换内味了
//提醒一下这和FFT的区别:没有乘单位根
if(opt==-1) g[k]=1ll*g[k]*inv2%mod,g[k+m]=1ll*g[k+m]*inv2%mod;
//而且反演的时候也不一样
}
}
}
}
就愉快地学完啦!是不是比FFT简单
FMT/FWT学习笔记的更多相关文章
- FWT学习笔记
FWT学习笔记 引入 一般的多项式乘法是这样子的: \(c_i=\sum_{i,j}a_j*b_k*[j+k==i]\) 但是如果我们将这个乘法式子里面的+号变换一下变成其他的运算符号呢? \(c_i ...
- 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...
- FWT 学习笔记
FWT学习笔记 好久以前写的,先粘上来 定义数组 \(n=2^k\) \(A=[a_0,a_1,a_2,a_3,...,a_{n-1}]\) 令\(A_0=[a_0,a_1,a_2,...,a_{\f ...
- $\text {FWT}$学习笔记
\(\text {FWT}\) 学习笔记 正常项的\(\text {FWT}\) 在\(\text {OI}\)中,我们经常会碰到这种问题: 给出一个长度为\(n\)的序列\(a_{1,2,...,n ...
- 快速沃尔什变换 (FWT)学习笔记
证明均来自xht37 的洛谷博客 作用 在 \(OI\) 中,\(FWT\) 是用于解决对下标进行位运算卷积问题的方法. \(c_{i}=\sum_{i=j \oplus k} a_{j} b_{k} ...
- 快速沃尔什变换 FWT 学习笔记【多项式】
〇.前言 之前看到异或就担心是 FWT,然后才开始想别的. 这次学了 FWT 以后,以后判断应该就很快了吧? 参考资料 FWT 详解 知识点 by neither_nor 集训队论文 2015 集合幂 ...
- 快速沃尔什变换(FWT)学习笔记 + 洛谷P4717 [模板]
FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor ...
- 卷积理论 & 高维FWT学习笔记
之前做了那么多生成函数和多项式卷积的题目,结果今天才理解了优化卷积算法的实质. 首先我们以二进制FWT or作为最简单的例子入手. 我们发现正的FWT or变换就是求$\hat{a}_j=\sum_{ ...
- [学习笔记]FWT——快速沃尔什变换
解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...
随机推荐
- Shell 变量引用实例
初学 Shell 编程时,对变量各种引用使用不太熟悉,走了很多弯路,本文记录变量引用的一些用法,希望对大家有所帮助. 引用 引用指将字符串用引用符号引起来,以防止特殊字符被 shell 脚本解释为其他 ...
- 判断一个字符串是否是合法IP地址
# -*- coding: utf-8 -*- """ @File:test06_判断ip地址是否合法.py @E-mail:364942727@qq.com @Time ...
- vue2.x学习笔记(二十一)
接着前面的内容:https://www.cnblogs.com/yanggb/p/12632730.html. 可复用性&结合-混入 基础 混入(mixin)提供了一种非常灵活的方式,来分发v ...
- [PHP][thinkphp5] 学习三:函数助手实例说明
来源:http://blog.csdn.net/lunsunhuan1825/article/details/71086487 load_trait:快速导入Traits,PHP5.5以上无需调用 / ...
- XSS语义分析的阶段性总结(一)
本文作者:Kale 前言 由于X3Scan的研发已经有些进展了,所以对这一阶段的工作做一下总结!对于X3Scan的定位,我更加倾向于主动+被动的结合.主动的方面主要体现在可以主动抓取页面链接并发起请求 ...
- Python爬虫篇(代理IP)--lizaza.cn
在做网络爬虫的过程中经常会遇到请求次数过多无法访问的现象,这种情况下就可以使用代理IP来解决.但是网上的代理IP要么收费,要么没有API接口.秉着能省则省的原则,自己创建一个代理IP库. 废话不多说, ...
- tp5--路由的使用方法(深入)
懒得写注释,直接上代码 配置文件Route: <?php use think\Route; //tp5路由测试 //动态注册 //Route::rule('路由表达式','路由地址','请求类型 ...
- java学习(第四篇)数组
一.一维数组 1.声明,分配内存 int[] a=new int[10]; 数组元素的数据类型 [] 数组名=new 类型 [数组元素个数]: 2.初始化 int[] a=new int[] {1,2 ...
- Windows 自动登录
https://serverfault.com/questions/840557/auto-login-a-user-at-boot-on-windows-server-2016 Use Sysint ...
- vue 开发规范
本文档为前端 vue 开发规范 规范目的 命名规范 结构化规范 注释规范 编码规范 CSS 规范 规范目的 为提高团队协作效率 便于后台人员添加功能及前端后期优化维护 输出高质量的文档 命名规范 为了 ...