LGOJ3747 六省联考2017 分手是祝愿
这两天遇到不少这种“人类智慧题”了,感觉都是很巧妙的
Description
现在有 \(n\) 盏灯,设每一次操作控制第 \(i\) 占灯,而改变状态的灯就是 \(i\) 的所有约数
现在给定初始的灯的状态序列,求剩余k次操作,就把灯全部关闭的步数期望\(+k\)和\(n!\) 的乘积
答案对 \(10003\) 取模
\(n \leq 10^5\)
Solution
思路分析
上来我们看到了“期望”,直接想到这题要 \(dp\)
然后定义状态是个难题(下面没有扯淡了)
\(f[i]\) 表示离全关掉还有 \(i\) 步走到离全关掉还有 \(i-1\) 步的期望操作次数。(这里是重点)
转移的时候考虑两种情况:
\(1^0\) 一次性摁对了,这种情况有\(\frac{i}{n}\)的概率
\(2^0\) 一次摁不对,需要转到\(i+1\)的状态
所以转移方程直接给出
\]
整理得:
\]
算法流程
最后给出本题流程:
1.\(O(n \sqrt n)\) 预处理因数的个数
2.从后往前扫一下,看一共需要几次完成游戏(特判如果\(cnt \leq k\),就直接乘上阶乘走人就好)
3.跑一下上面的 \(dp\),\(O(n)\)的,也不用优化
逆元啥的不会先去学板子吧
4.最后记得成阶乘
Code
#include <bits/stdc++.h>
using namespace std;
#define int long long
namespace yspm {
inline int read() {
int res = 0, f = 1;
char k;
while (!isdigit(k = getchar()))
if (k == '-')
f = -1;
while (isdigit(k)) res = res * 10 + k - '0', k = getchar();
return res * f;
}
const int N = 1e5 + 10;
vector<int> vec[N];
int n, k, f[N], mod = 100003, now[N], cnt, fac = 1, ans;
inline void prework() {
for (int i = 1; i <= n; ++i) {
for (int j = i; j <= n; j += i) vec[j].push_back(i);
}
for (int i = n; i >= 1; --i)
if (now[i]) {
++cnt;
int sz = vec[i].size();
for (int j = 0; j < sz; ++j) now[vec[i][j]] = !now[vec[i][j]];
}
return;
}
inline int ksm(int x, int y) {
int res = 1;
for (; y; y >>= 1) {
if (y & 1)
(res *= x) %= mod;
(x *= x) %= mod;
}
return res;
}
inline int inv(int x) { return ksm(x, mod - 2); }
signed main() {
n = read();
k = read(); f[n]=1;
for (int i = 1; i <= n; ++i) now[i] = read(), (fac *= i) %= mod;
prework();
if (cnt <= k)
return cout << cnt * fac % mod << endl, 0;
for (int i = n - 1; i > k; --i) f[i] = (n + (n - i) * f[i + 1] % mod) % mod * inv(i) % mod;
for (int i = cnt; i > k; --i) (ans += f[i]) %= mod;
cout << (ans+k) * fac % mod << endl;
return 0;
}
} // namespace yspm
signed main() { return yspm::main(); }
LGOJ3747 六省联考2017 分手是祝愿的更多相关文章
- BZOJ 4872 luogu P3750 [六省联考2017]分手是祝愿
4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description ...
- bzoj千题计划266:bzoj4872: [六省联考2017]分手是祝愿
http://www.lydsy.com/JudgeOnline/problem.php?id=4872 一种最优解是 从大到小灯有亮的就灭掉 最优解是唯一的,且关灯的顺序没有影响 最优解 对每个开关 ...
- [BZOJ4872][六省联考2017]分手是祝愿(期望DP)
4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 516 Solved: 342[Submit][Statu ...
- [BZOJ4872][六省联考2017]分手是祝愿
BZOJ Luogu sol 首先发现肯定有解,又因为每个位置至多操作一次,所以最优解一定是在\([0,n]\)之间 有一种可以在\(O(\sum_{i=1}^{n}\lfloor\frac{n}{i ...
- luoguP3750 [六省联考2017]分手是祝愿 概率期望DP + 贪心
...........真的神状态了,没办法去想的状态................... 考试的时候选择$50$分贪心+$15$分状压吧,别的点就放弃算了........ 令$f[i]$表示从最小步 ...
- [六省联考2017]分手是祝愿 期望DP
表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...
- P3750 [六省联考2017]分手是祝愿 期望DP
\(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...
- BZOJ4872 [六省联考2017]分手是祝愿 【期望dp】
题目 Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为 从 1 ...
- 洛谷P3750 [六省联考2017]分手是祝愿(期望dp)
传送门 嗯……概率期望这东西太神了…… 先考虑一下最佳方案,肯定是从大到小亮的就灭(这个仔细想一想应该就能发现) 那么直接一遍枚举就能$O(nlogn)$把这个东西给搞出来 然后考虑期望dp,设$f[ ...
随机推荐
- 解决Java POI 导出Excel时文件名中文乱码,兼容浏览器
String agent = request.getHeader("USER-AGENT").toLowerCase(); response.setContentType(&quo ...
- Java多线程的应用
一.概述 提到线程不得不提进行.因为线程是进程的一个执行单元.下面对线程和进程分别进行介绍. 1.进程 进程是当前操作系统执行的任务,是并发执行的程序在执行过程中分配和管理资源的基本单位,是一个动态概 ...
- js 混合构造原型 运用
1.给10个div添加点击事件 <body> <div class="sd">sdss</div> <div class="sd ...
- tc: 模拟网络异常的工具
作者:smallnest Linux Traffic Control (tc)的扩展 Network Emulation (netem)可以很方便的模拟网络不好的情况,一般新的linux内核中(> ...
- 由于找不到msvcp100.dll无法继续执行代码
最近重装系统之后安装mysql, 执行 mysqld install 命令时出现 : 由于找不到msvcp100.dll无法继续执行代码... 解决办法 下载 Microsoft Visual C++ ...
- 量化投资_Multicharts数组操作函数_zeros()设定数组元素为0(自定义)
1. 函数的用法类似于Python的zeros函数,给定数组尺寸,让数组的元素归零 //zeros:根据设定的尺寸长度,让一维数组的元素全部归零 inputs: arr[MaxSize]( numer ...
- 新手转行必知!Python和Java到底有啥区别?
TIOBE 9月编程语言排行榜中Java第一,但PYPL 9月排行榜中Python却是第一.两个编程语言排行榜均是旨在给开发者做一个学习参考,那么问题来了:Java和Python都很火,两个语言到底有 ...
- css笔记01
CSS样式(Cascading Style Sheets) 表格布局缺陷: 嵌套太多,一旦顺序错乱页面达不到预期效果 表格布局页面不灵活,动一块整个布局全都要变 语法: 在style标签中 ...
- flink和spark Streaming中的Back Pressure
Spark Streaming的back pressure 在讲flink的back pressure之前,我们先讲讲Spark Streaming的back pressure.Spark Strea ...
- web嵌入到原生的app里需要注意的事项
1.https://www.cnblogs.com/shimily/articles/7943370.html 2.https://www.cnblogs.com/stoneniqiu/p/60771 ...