看了Siraj Raval的3个月学习机器学习计划的视频,感觉非常好,地址:https://www.youtube.com/watch?v=Cr6VqTRO1v0
结合一些我们学习中的经验得出一份Hybrid的机器学习自学计划。

根据Siraj的建议:机器学习的涉及的知识比例分布的

  1. 35%线性代数
  2. 25%概率论和统计学
  3. 15%微积分
  4. 15%算法及其复杂性
  5. 10%是数据预处理知识

强烈建议订阅:Siraj Raval 的youtube

看他的视频非常舒服,一种非常独特的学习方式而且和有用,地址是:https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A

reddit这个网站大家可能不太熟悉,但是它已经全美流量排名第四,仅次于Google,YouTube和Facebook,上面内容质量很高,非常专注,下面这个地址是机器学习的subreddit:https://www.reddit.com/r/MachineLearning/

第一个月:数学

线性代数:

看Gillbert Strang教授的教程足够了:https://www.youtube.com/playlist?list=PL49CF3715CB9EF31D
为什么不推荐中国大学的数学课程呢,其实网易公开课上有跟大学里线性代数课程基本一致需要虽然是中文但是学习起来还是有难度的,没什么互动,如果是为了考试那还好。Gillbert Strang教授讲的更多是思考方式以及原理和各种形象的比喻,这种方式更适合我们在职学习,加强理解和思考。
注意:一定做笔记,不能只是听或者看,一定要做笔记,记录要点,疑问,自己的想法等等,这个非常重要,是决定你能否学习好的关键。昨天看到了一位名叫Tess Ferrandez的小姐姐在推特上分享了一套自己的吴恩达老师的课程笔记,再看看我自己以前的笔记,真是非常害羞,世界上最难受的事情就是比你厉害比你努力的人做的笔记颜值也比你高,地址在这里:https://www.slideshare.net/TessFerrandez/notes-from-coursera-deep-learning-courses-by-andrew-ng
附上一张图片,大家看看:

微积分:

3Blue1Brown的微积分的本质,老师当时就是看这个视频理解微积分的,老师笨,看了8遍左右吧,个别的视频看了15遍以上,没毛病是真实情况,因为每一段视频并不长,适合反复看,同时也能提高英语能力。
https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr

概率和统计:

edX(麻省理工和哈佛大学联手创建的开放在线课堂平台)有一门很好的课程叫做“科学的不确定性”
https://www.edx.org/course/introduction-probability-science-mitx-6-041x-2

第二个月:机器学习

这里我们按照Siraj的建议来
第一周学习:python,The Math of Intelligence,Tensorflow

第二周:Udacity 上的机器学习课程

第三四周:实践机器学习项目

相关地址如下:

python
https://www.youtube.com/watch?v=T5pRlIbr6gg

The Math of Intelligence
https://www.youtube.com/watch?v=xRJCOz3AfYY

Tensorflow
https://www.youtube.com/watch?v=2FmcHiLCwTU

Udacity
https://eu.udacity.com/course/intro-to-machine-learning--ud120

机器学习开源项目
https://github.com/NirantK/awesome-project-ideas

第三个月深度学习

深度学习要用到大量的计算,需要GPU,即使刚入门也需要,买一块NVIDIA Tesla k80的GPU的价格2500美金,好吧。但是非常幸运的是google为我们提供了一块免费的GPU可用:注册google的账号,登陆进去,访问:https://colab.research.google.com 然后尽情的使用了。
视频教程推荐看Siraj本人的:https://www.youtube.com/watch?v=vOppzHpvTiQ
另外一个全世界都说好的是Fast.AI的课程,http://course.fast.ai/
最后呢附上一些深度学习的开源代码,也可以自己实现一下,传到自己的github上 https://github.com/llSourcell?tab=repositories

总结

介绍了一份机器学习的自学计划和相关资源,每天保证2个小时的专注学习时间,重点是多思考和找到解决问题的套路,不要把自己的大脑当作是固态硬盘来存数据,要把自己的大脑当作是CPU或者是GPU,是用来计算的。

转载于:https://juejin.im/post/5ab20f88f265da238532be28

一份中外结合的 Machine Learning 自学计划的更多相关文章

  1. What skills are needed for machine learning jobs

    What skills are needed for machine learning jobs?机器学习工作必须技能 原文: http://www.quora.com/Machine-Learnin ...

  2. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  3. Machine Learning Algorithms Study Notes(3)--Learning Theory

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...

  4. Pattern Recognition And Machine Learning读书会前言

    读书会成立属于偶然,一次群里无聊到极点,有人说Pattern Recognition And Machine Learning这本书不错,加之有好友之前推荐过,便发了封群邮件组织这个读书会,采用轮流讲 ...

  5. 机器学习(Machine Learning)&深度学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  6. 机器学习(Machine Learning)&深入学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林. ...

  7. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  8. [machine learning] Loss Function view

    [machine learning] Loss Function view 有关Loss Function(LF),只想说,终于写了 一.Loss Function 什么是Loss Function? ...

  9. Coursera《machine learning》--(8)神经网络表述

    本笔记为Coursera在线课程<Machine Learning>中的神经网络章节的笔记. 八.神经网络:表述(Neural Networks: Representation) 本节主要 ...

随机推荐

  1. Pytest系列(10) - firture 传参数 request的详细使用

    如果你还想从头学起Pytest,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1690628.html 前言 为了提高复用性,我们在写测试 ...

  2. 好玩Python——PIL项目实训

    PIL学习总结: 1. 2,PIL库概述: pil库可以完成图像归档和图像处理两方面功能的需求: 图像归档:对图像进行批处理,生成图像预览,图像转换格式等: 图像处理:图像基本处理,像素处理,颜色处理 ...

  3. 【numpy】新版本中numpy(numpy>1.17.0)中的random模块

    numpy是Python中经常要使用的一个库,而其中的random模块经常用来生成一些数组,本文接下来将介绍numpy中random模块的一些使用方法. 首先查看numpy的版本: import nu ...

  4. pgsql中的事务隔离

    pgsql中的事务隔离级别 前言 事物隔离级别 在各个级别上被禁止出现的现象是 脏读 不可重复读 幻读 序列化异常 读已提交隔离级别 可重复读隔离级别 可序列化隔离级别 摘录 pgsql中的事务隔离级 ...

  5. 解决从服务器获取的数组是 __NSCFConstantString以及""没有空格字符串的问题

    AJ分享,必须精品 问题 项目遇到了个bug,从服务器获取到的数据是这样的 { status = 1, data = [ { uid = 161, type = 2, id = 79, addtime ...

  6. python干货:5种反扒机制的解决方法

    前言 反爬虫是网站为了维护自己的核心安全而采取的抑制爬虫的手段,反爬虫的手段有很多种,一般情况下除了百度等网站,反扒机制会常常更新以外.为了保持网站运行的高效,网站采取的反扒机制并不是太多,今天分享几 ...

  7. [bilibili服]明日方舟游戏时长限制破解

    bilibili服 明日方舟 游戏时长如何破解 众所周知,明日方舟游戏对未成年人实行了游戏时长限制,小编也感到十分惊讶--咳咳--言归正传--之前在网上看到过有说可以通过进入战斗之后断网来实现延长时间 ...

  8. css特效sh

    1   opacity=0.5:                                                             透明度 2    选择器   .btn1:ho ...

  9. redis的多路复用是什么鬼

    有没有人和我一样, 自打知道了redis, 就一直听说什么redis单线程, 使用了多路复用等等. 天真的我以为多路复用是redis实现的技术. 今天才发现, 我被自己骗了, 多路复用是系统来实现的. ...

  10. 数据源管理 | PostgreSQL环境整合,JSON类型应用

    本文源码:GitHub·点这里 || GitEE·点这里 一.PostgreSQL简介 1.和MySQL的比较 PostgreSQL是一个功能强大的且开源关系型数据库系统,在网上PostgreSQL和 ...