题目链接

Problem Description

Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.

Input

The first line of input contains an integer T, denoting the number of test cases.

For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)

Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)

Output

For each test cases, you should output the maximum flow from source 1 to sink N.

Sample Input

2

3 2

1 2 1

2 3 1

3 3

1 2 1

2 3 1

1 3 1
Sample Output

Case 1: 1
Case 2: 2

模板题,用来测试模板,我的模板都能过。

#include<cstdio>
#include<cstring>
#include<queue>
#define INF 1e9
using namespace std;
const int maxn=200+5; struct Edge
{
int from,to,cap,flow;
Edge() {}
Edge(int f,int t,int c,int flow):from(f),to(t),cap(c),flow(flow) {}
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int cur[maxn];
int d[maxn]; void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=1; i<=n; i++)
G[i].clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} bool BFS()
{
memset(vis,0,sizeof(vis));
queue<int> Q;
d[s]=0;
Q.push(s);
vis[s]=true;
while(!Q.empty())
{
int x=Q.front();
Q.pop();
for(int i=0; i<G[x].size(); i++)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
Q.push(e.to);
d[e.to]= 1+d[x];
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t || a==0)
return a;
int flow=0,f;
for(int& i=cur[x]; i<G[x].size(); i++)
{
Edge& e=edges[G[x][i]];
if(d[x]+1==d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow) ))>0 )
{
e.flow+=f;
edges[G[x][i]^1].flow -=f;
flow+=f;
a-=f;
if(a==0)
break;
}
}
return flow;
} int Maxflow()
{
int flow=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
flow += DFS(s,INF);
}
return flow;
}
} DC; int main()
{
int n,m,t;
scanf("%d",&t);
for(int i=1;i<=t;++i)
{
scanf("%d%d",&n,&m);
DC.init(n,1,n);
while(m--)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
DC.AddEdge(u,v,w);
}
printf("Case %d: %d\n",i,DC.Maxflow());
}
return 0;
}

网络流--最大流--HDU 3549 Flow Problem的更多相关文章

  1. HDU 3549 Flow Problem(最大流)

    HDU 3549 Flow Problem(最大流) Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/ ...

  2. 网络流 HDU 3549 Flow Problem

    网络流 HDU 3549 Flow Problem 题目:pid=3549">http://acm.hdu.edu.cn/showproblem.php?pid=3549 用增广路算法 ...

  3. hdu 3549 Flow Problem【最大流增广路入门模板题】

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3549 Flow Problem Time Limit: 5000/5000 MS (Java/Others ...

  4. hdu 3549 Flow Problem

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3549 Flow Problem Description Network flow is a well- ...

  5. HDU 3549 Flow Problem 网络流(最大流) FF EK

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Tot ...

  6. HDU 3549 Flow Problem (最大流ISAP)

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

  7. hdu 3549 Flow Problem Edmonds_Karp算法求解最大流

    Flow Problem 题意:N个顶点M条边,(2 <= N <= 15, 0 <= M <= 1000)问从1到N的最大流量为多少? 分析:直接使用Edmonds_Karp ...

  8. hdu 3549 Flow Problem (网络最大流)

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

  9. hdu 3549 Flow Problem 最大流问题 (模板题)

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

随机推荐

  1. 家庭记账本app进度之关于tap的相关操作1

    今天还主要学习关于怎样制作微信的先关的tap. 今天的主要成果是已经了解了相关的技术,以及相关的思路.代码经过一个下午的编写,基本接近尾声. 更详细的实验代码,以及相关的知识点将在明天完善后进行发表. ...

  2. Flask 入门(五)

    jinjia2模板传参 在html中调用python代码中传入的参数规则己经在上文中说明白了,下面,我们来实用一下: 1.编辑index.py中的代码如下: from flask import Fla ...

  3. HBase-2.2.3源码编译-Windows版

    源码环境一览 windows: 7 64Bit Java: 1.8.0_131 Maven:3.3.9 Git:2.24.0.windows.1 HBase:2.2.3 Hadoop:2.8.5 下载 ...

  4. pgsql中的行锁

    pgsql中的行锁 前言 用户可见的锁 regular Lock 行级别 FOR UPDATE FOR NO KEY UPDATE FOR SHARE FOR KEY SHARE 测试下加锁之后的数据 ...

  5. git撤销远程commit

    git reset --hard [commit_id] git push origin HEAD --force

  6. 游戏开服 报一些 ip 设置 数据格式的异常,但断点明明都是数字 没问题的

    游戏服开始起服,结果报乱七八招的错误,先  ccs 那 ip 有问题,我给直接注释掉了:然后又 报 KeyValueDictCache 中 ips 设置有问题,都是报格式错误,结果我断点明明都是数字结 ...

  7. MySQL exists的用法

    有一个查询如下: 1 SELECT c.CustomerId, CompanyName 2 FROM Customers c 3 WHERE EXISTS( 4 SELECT OrderID FROM ...

  8. AJ学IOS(07)UI之UITextField代理事件_类似QQ登陆窗口的简单实现

    AJ分享,必须精品 先看效果图: 学习代码 // // NYViewController.m // 05-UITextField事件_UIKit复习 // // Created by apple on ...

  9. PDF阅读器

    1.SumatraPDF 非常小巧,打开很轻快 2.PDF Reader by Xodo window商店中可以找到,很好用 3. PDFXChange Editor这是我迄今为止见过的最好的PDF编 ...

  10. Eclipse版本控制

    各版本的区别: 1.Eclipse IDE for Java Developers 是Eclipse的platform加上JDT插件,用来java开发的 2.Eclipse IDE for Java  ...