先谈谈akka-typed的router actor。route 分pool router, group router两类。我们先看看pool-router的使用示范:

      val pool = Routers.pool(poolSize = )(
// make sure the workers are restarted if they fail
Behaviors.supervise(WorkerRoutee()).onFailure[Exception](SupervisorStrategy.restart))
val router = ctx.spawn(pool, "worker-pool") ( to ).foreach { n =>
router ! WorkerRoutee.DoLog(s"msg $n")
}

上面例子里的pool是个pool-router,意思是一个有4个routees的routee池。每个routee都是通过WorkerRoutee()构建的,意味着routee池中只有一个种类的actor。pool-router是通过工厂方法直接在本地(JVM)构建(spawn)所有的routee。也就是说所有routee都是router的子actor。

再看看group-router的使用例子:

val serviceKey = ServiceKey[Worker.Command]("log-worker")

      // this would likely happen elsewhere - if we create it locally we
// can just as well use a pool
val workerRoutee = ctx.spawn(WorkerRoutee(), "worker-route")
ctx.system.receptionist ! Receptionist.Register(serviceKey, workerRoutee) val group = Routers.group(serviceKey)
val router = ctx.spawn(group, "worker-group") // the group router will stash messages until it sees the first listing of registered
// services from the receptionist, so it is safe to send messages right away
( to ).foreach { n =>
router ! WorkerRoutee.DoLog(s"msg $n")
}

group-router与pool-router有较多分别:

1、routee是在router之外构建的,router是用一个key通过Receptionist获取同key的actor清单作为routee group的

2、Receptionist是集群全局的。任何节点上的actor都可以发送注册消息在Receptionist上登记

3、没有size限制,任何actor一旦在Receptionist上登记即变成routee,接受router管理

应该说如果想把运算任务分配在集群里的各节点上并行运算实现load-balance效果,group-router是最合适的选择。不过对不同的运算任务需要多少routee则需要用户自行决定,不像以前akka-classic里通过cluster-metrics根据节点负载情况自动增减routee实例那么方便。

Receptionist: 既然说到,那么就再深入一点介绍Receptionist的应用:上面提到,Receptionist是集群全局的。就是说任何节点上的actor都可以在Receptonist上注册形成一个生存在集群中不同节点的actor清单。如果Receptionist把这个清单提供给一个用户,那么这个用户就可以把运算任务配置到各节点上,实现某种意义上的分布式运算模式。Receptionist的使用方式是:通过向本节点的Receptionist发送消息去登记ActorRef,然后通过Receptionist发布的登记变化消息即可获取最新的ActorRef清单:

  val WorkerServiceKey = ServiceKey[Worker.TransformText]("Worker")

  ctx.system.receptionist ! Receptionist.Register(WorkerServiceKey, ctx.self)

  ctx.system.receptionist ! Receptionist.Subscribe(Worker.WorkerServiceKey, subscriptionAdapter)

Receptionist的登记和清单获取是以ServiceKey作为关联的。那么获取的清单内应该全部是一种类型的actor,只不过它们的地址可能是跨节点的,但它们只能进行同一种运算。从另一个角度说,一项任务是分布在不同节点的actor并行进行运算的。

在上篇讨论里提过:如果发布-订阅机制是在两个actor之间进行的,那么这两个actor也需要在规定的信息交流协议框架下作业:我们必须注意消息类型,提供必要的消息类型转换机制。下面是一个Receptionist登记示范:

object Worker {

  val WorkerServiceKey = ServiceKey[Worker.TransformText]("Worker")

  sealed trait Command
final case class TransformText(text: String, replyTo: ActorRef[TextTransformed]) extends Command with CborSerializable
final case class TextTransformed(text: String) extends CborSerializable def apply(): Behavior[Command] =
Behaviors.setup { ctx =>
// each worker registers themselves with the receptionist
ctx.log.info("Registering myself with receptionist")
ctx.system.receptionist ! Receptionist.Register(WorkerServiceKey, ctx.self) Behaviors.receiveMessage {
case TransformText(text, replyTo) =>
replyTo ! TextTransformed(text.toUpperCase)
Behaviors.same
}
}
}

Receptionist登记比较直接:登记者不需要Receptionist返回消息,所以随便用ctx.self作为消息的sender。注意TransformText的replyTo: ActorRef[TextTransformed],代表sender是个可以处理TextTransformed消息类型的actor。实际上,在sender方是通过ctx.ask提供了TextTransformed的类型转换。

Receptionist.Subscribe需要Receptionist返回一个actor清单,所以是个request/response模式。那么发送给Receptionist消息中的replyTo必须是发送者能处理的类型,如下:

  def apply(): Behavior[Event] = Behaviors.setup { ctx =>
Behaviors.withTimers { timers =>
// subscribe to available workers
val subscriptionAdapter = ctx.messageAdapter[Receptionist.Listing] {
case Worker.WorkerServiceKey.Listing(workers) =>
WorkersUpdated(workers)
}
ctx.system.receptionist ! Receptionist.Subscribe(Worker.WorkerServiceKey, subscriptionAdapter) ...
}

ctx.messageAdapter进行了一个从Receptionist.Listing返回类型到WorkersUpdated类型的转换机制登记:从Receptionist回复的List类型会被转换成WorkersUpdated类型,如下:

...
Behaviors.receiveMessage {
case WorkersUpdated(newWorkers) =>
ctx.log.info("List of services registered with the receptionist changed: {}", newWorkers) ...

另外,上面提过的TextTransformed转换如下:

          ctx.ask[Worker.TransformText,Worker.TextTransformed](selectedWorker, Worker.TransformText(text, _)) {
case Success(transformedText) => TransformCompleted(transformedText.text, text)
case Failure(ex) => JobFailed("Processing timed out", text)
}

ctx.ask将TextTransformed转换成TransformCompleted。完整的Behavior定义如下:

object Frontend {

  sealed trait Event
private case object Tick extends Event
private final case class WorkersUpdated(newWorkers: Set[ActorRef[Worker.TransformText]]) extends Event
private final case class TransformCompleted(originalText: String, transformedText: String) extends Event
private final case class JobFailed(why: String, text: String) extends Event def apply(): Behavior[Event] = Behaviors.setup { ctx =>
Behaviors.withTimers { timers =>
// subscribe to available workers
val subscriptionAdapter = ctx.messageAdapter[Receptionist.Listing] {
case Worker.WorkerServiceKey.Listing(workers) =>
WorkersUpdated(workers)
}
ctx.system.receptionist ! Receptionist.Subscribe(Worker.WorkerServiceKey, subscriptionAdapter) timers.startTimerWithFixedDelay(Tick, Tick, .seconds) running(ctx, IndexedSeq.empty, jobCounter = )
}
} private def running(ctx: ActorContext[Event], workers: IndexedSeq[ActorRef[Worker.TransformText]], jobCounter: Int): Behavior[Event] =
Behaviors.receiveMessage {
case WorkersUpdated(newWorkers) =>
ctx.log.info("List of services registered with the receptionist changed: {}", newWorkers)
running(ctx, newWorkers.toIndexedSeq, jobCounter)
case Tick =>
if (workers.isEmpty) {
ctx.log.warn("Got tick request but no workers available, not sending any work")
Behaviors.same
} else {
// how much time can pass before we consider a request failed
implicit val timeout: Timeout = .seconds
val selectedWorker = workers(jobCounter % workers.size)
ctx.log.info("Sending work for processing to {}", selectedWorker)
val text = s"hello-$jobCounter"
ctx.ask[Worker.TransformText,Worker.TextTransformed](selectedWorker, Worker.TransformText(text, _)) {
case Success(transformedText) => TransformCompleted(transformedText.text, text)
case Failure(ex) => JobFailed("Processing timed out", text)
}
running(ctx, workers, jobCounter + )
}
case TransformCompleted(originalText, transformedText) =>
ctx.log.info("Got completed transform of {}: {}", originalText, transformedText)
Behaviors.same case JobFailed(why, text) =>
ctx.log.warn("Transformation of text {} failed. Because: {}", text, why)
Behaviors.same }

现在我们可以示范用group-router来实现某种跨节点的分布式运算。因为group-router是通过Receptionist来实现对routees管理的,而Receptionist是集群全局的,意味着如果我们在各节点上构建routee,然后向Receptionist登记,就会形成一个跨节点的routee ActorRef清单。如果把任务分配到这个清单上的routee上去运算,应该能实现集群节点负载均衡的效果。下面我们就示范这个loadbalancer。流程很简单:在一个接入点 (serviceActor)中构建workersRouter,然后3个workerRoutee并向Receptionist登记,把接到的任务分解成子任务逐个发送给workersRouter。每个workerRoutee完成任务后将结果发送给一个聚合器Aggregator,Aggregator在核对完成接收所有workerRoutee返回的结果后再把汇总结果返回serverActor。先看看这个serverActor:

object Service {
val routerServiceKey = ServiceKey[WorkerRoutee.Command]("workers-router") sealed trait Command extends CborSerializable case class ProcessText(text: String) extends Command {
require(text.nonEmpty)
} case class WrappedResult(res: Aggregator.Response) extends Command def serviceBehavior(workersRouter: ActorRef[WorkerRoutee.Command]): Behavior[Command] = Behaviors.setup[Command] { ctx =>
val aggregator = ctx.spawn(Aggregator(), "aggregator")
val aggregatorRef: ActorRef[Aggregator.Response] = ctx.messageAdapter(WrappedResult)
Behaviors.receiveMessage {
case ProcessText(text) =>
ctx.log.info("******************** received ProcessText command: {} ****************",text)
val words = text.split(' ').toIndexedSeq
aggregator ! Aggregator.CountText(words.size, aggregatorRef)
words.foreach { word =>
workersRouter ! WorkerRoutee.Count(word, aggregator)
}
Behaviors.same
case WrappedResult(msg) =>
msg match {
case Aggregator.Result(res) =>
ctx.log.info("************** mean length of words = {} **********", res)
}
Behaviors.same
}
} def singletonService(ctx: ActorContext[Command], workersRouter: ActorRef[WorkerRoutee.Command]) = {
val singletonSettings = ClusterSingletonSettings(ctx.system)
.withRole("front")
SingletonActor(
Behaviors.supervise(
serviceBehavior(workersRouter)
).onFailure(
SupervisorStrategy
.restartWithBackoff(minBackoff = .seconds, maxBackoff = .seconds, randomFactor = 0.1)
.withMaxRestarts()
.withResetBackoffAfter(.seconds)
)
, "singletonActor"
).withSettings(singletonSettings)
} def apply(): Behavior[Command] = Behaviors.setup[Command] { ctx =>
val cluster = Cluster(ctx.system)
val workersRouter = ctx.spawn(
Routers.group(routerServiceKey)
.withRoundRobinRouting(),
"workersRouter"
)
( until ).foreach { n =>
val routee = ctx.spawn(WorkerRoutee(cluster.selfMember.address.toString), s"work-routee-$n")
ctx.system.receptionist ! Receptionist.register(routerServiceKey, routee)
}
val singletonActor = ClusterSingleton(ctx.system).init(singletonService(ctx, workersRouter))
Behaviors.receiveMessage {
case job@ProcessText(text) =>
singletonActor ! job
Behaviors.same
}
} }

整体goup-router和routee的构建是在apply()里,并把接到的任务转发给singletonActor。singletonActor是以serviceBehavior为核心的一个actor。在servceBehavior里把收到的任务分解并分别发送给workersRouter。值得注意的是:serviceBehavior期望接收从Aggregator的回应,它们之间存在request/response模式信息交流,所以需要Aggregator.Response到WrappedResult的类型转换机制。还有:子任务是通过workersRoute发送给个workerRoutee的,我们需要各workerRoutee把运算结果返给给Aggregator,所以发送给workersRouter的消息包含了Aggregator的ActorRef,如:workersRouter ! WorkerRoutee.Count(cnt,aggregatorRef)。

Aggregator是个persistentActor, 如下:

object Aggregator {
sealed trait Command
sealed trait Event extends CborSerializable
sealed trait Response case class CountText(cnt: Int, replyTo: ActorRef[Response]) extends Command
case class MarkLength(word: String, len: Int) extends Command
case class TextCounted(cnt: Int) extends Event
case class LengthMarked(word: String, len: Int) extends Event
case class Result(meanWordLength: Double) extends Response case class State(expectedNum: Int = , lens: List[Int] = Nil) var replyTo: ActorRef[Response] = _ def commandHandler: (State,Command) => Effect[Event,State] = (st,cmd) => {
cmd match {
case CountText(cnt,ref) =>
replyTo = ref
Effect.persist(TextCounted(cnt))
case MarkLength(word,len) =>
Effect.persist(LengthMarked(word,len))
}
}
def eventHandler: (State, Event) => State = (st,ev) => {
ev match {
case TextCounted(cnt) =>
st.copy(expectedNum = cnt, lens = Nil)
case LengthMarked(word,len) =>
val state = st.copy(lens = len :: st.lens)
if (state.lens.size >= state.expectedNum) {
val meanWordLength = state.lens.sum.toDouble / state.lens.size
replyTo ! Result(meanWordLength)
State()
} else state
}
}
val takeSnapShot: (State,Event,Long) => Boolean = (st,ev,seq) => {
if (st.lens.isEmpty) {
if (ev.isInstanceOf[LengthMarked])
true
else
false
} else
false
}
def apply(): Behavior[Command] = Behaviors.supervise(
Behaviors.setup[Command] { ctx =>
EventSourcedBehavior(
persistenceId = PersistenceId("",""),
emptyState = State(),
commandHandler = commandHandler,
eventHandler = eventHandler
).onPersistFailure(
SupervisorStrategy
.restartWithBackoff(minBackoff = .seconds, maxBackoff = .seconds, randomFactor = 0.1)
.withMaxRestarts()
.withResetBackoffAfter(.seconds)
).receiveSignal {
case (state, RecoveryCompleted) =>
ctx.log.info("**************Recovery Completed with state: {}***************",state)
case (state, SnapshotCompleted(meta)) =>
ctx.log.info("**************Snapshot Completed with state: {},id({},{})***************",state,meta.persistenceId, meta.sequenceNr)
case (state,RecoveryFailed(err)) =>
ctx.log.error("*************recovery failed with: {}***************",err.getMessage)
case (state,SnapshotFailed(meta,err)) =>
ctx.log.error("***************snapshoting failed with: {}*************",err.getMessage)
}.snapshotWhen(takeSnapShot)
}
).onFailure(
SupervisorStrategy
.restartWithBackoff(minBackoff = .seconds, maxBackoff = .seconds, randomFactor = 0.1)
.withMaxRestarts()
.withResetBackoffAfter(.seconds)
)
}

注意这个takeSnapShot函数:这个函数是在EventSourcedBehavior.snapshotWhen(takeSnapShot)调用的。传入参数是(State,Event,seqenceNr),我们需要对State,Event的当前值进行分析后返回true代表做一次snapshot。

看看一部分显示就知道任务已经分配到几个节点上的routee:

::59.072 [ClusterSystem-akka.actor.default-dispatcher-] INFO com.learn.akka.WorkerRoutee$ - ************** processing [this] on akka://ClusterSystem@127.0.0.1:51182 ***********
::59.072 [ClusterSystem-akka.actor.default-dispatcher-] INFO com.learn.akka.WorkerRoutee$ - ************** processing [text] on akka://ClusterSystem@127.0.0.1:51182 ***********
::59.072 [ClusterSystem-akka.actor.default-dispatcher-] INFO com.learn.akka.WorkerRoutee$ - ************** processing [be] on akka://ClusterSystem@127.0.0.1:51182 ***********
::59.236 [ClusterSystem-akka.actor.default-dispatcher-] INFO com.learn.akka.WorkerRoutee$ - ************** processing [will] on akka://ClusterSystem@127.0.0.1:51173 ***********
::59.236 [ClusterSystem-akka.actor.default-dispatcher-] INFO com.learn.akka.WorkerRoutee$ - ************** processing [is] on akka://ClusterSystem@127.0.0.1:25251 ***********
::59.236 [ClusterSystem-akka.actor.default-dispatcher-] INFO com.learn.akka.WorkerRoutee$ - ************** processing [the] on akka://ClusterSystem@127.0.0.1:51173 ***********
::59.236 [ClusterSystem-akka.actor.default-dispatcher-] INFO com.learn.akka.WorkerRoutee$ - ************** processing [that] on akka://ClusterSystem@127.0.0.1:25251 ***********
::59.236 [ClusterSystem-akka.actor.default-dispatcher-] INFO com.learn.akka.WorkerRoutee$ - ************** processing [analyzed] on akka://ClusterSystem@127.0.0.1:25251 ***********

这个例子的源代码如下:

package com.learn.akka

import akka.actor.typed._
import akka.persistence.typed._
import akka.persistence.typed.scaladsl._
import scala.concurrent.duration._
import akka.actor.typed.receptionist._
import akka.actor.typed.scaladsl.Behaviors
import akka.actor.typed.scaladsl._
import akka.cluster.typed.Cluster
import akka.cluster.typed.ClusterSingleton
import akka.cluster.typed.ClusterSingletonSettings
import akka.cluster.typed.SingletonActor
import com.typesafe.config.ConfigFactory object WorkerRoutee {
sealed trait Command extends CborSerializable
case class Count(word: String, replyTo: ActorRef[Aggregator.Command]) extends Command def apply(nodeAddress: String): Behavior[Command] = Behaviors.setup {ctx =>
Behaviors.receiveMessage[Command] {
case Count(word,replyTo) =>
ctx.log.info("************** processing [{}] on {} ***********",word,nodeAddress)
replyTo ! Aggregator.MarkLength(word,word.length)
Behaviors.same
}
}
}
object Aggregator {
sealed trait Command
sealed trait Event extends CborSerializable
sealed trait Response case class CountText(cnt: Int, replyTo: ActorRef[Response]) extends Command
case class MarkLength(word: String, len: Int) extends Command
case class TextCounted(cnt: Int) extends Event
case class LengthMarked(word: String, len: Int) extends Event
case class Result(meanWordLength: Double) extends Response case class State(expectedNum: Int = , lens: List[Int] = Nil) var replyTo: ActorRef[Response] = _ def commandHandler: (State,Command) => Effect[Event,State] = (st,cmd) => {
cmd match {
case CountText(cnt,ref) =>
replyTo = ref
Effect.persist(TextCounted(cnt))
case MarkLength(word,len) =>
Effect.persist(LengthMarked(word,len))
}
}
def eventHandler: (State, Event) => State = (st,ev) => {
ev match {
case TextCounted(cnt) =>
st.copy(expectedNum = cnt, lens = Nil)
case LengthMarked(word,len) =>
val state = st.copy(lens = len :: st.lens)
if (state.lens.size >= state.expectedNum) {
val meanWordLength = state.lens.sum.toDouble / state.lens.size
replyTo ! Result(meanWordLength)
State()
} else state
}
}
val takeSnapShot: (State,Event,Long) => Boolean = (st,ev,seq) => {
if (st.lens.isEmpty) {
if (ev.isInstanceOf[LengthMarked])
true
else
false
} else
false
}
def apply(): Behavior[Command] = Behaviors.supervise(
Behaviors.setup[Command] { ctx =>
EventSourcedBehavior(
persistenceId = PersistenceId("",""),
emptyState = State(),
commandHandler = commandHandler,
eventHandler = eventHandler
).onPersistFailure(
SupervisorStrategy
.restartWithBackoff(minBackoff = .seconds, maxBackoff = .seconds, randomFactor = 0.1)
.withMaxRestarts()
.withResetBackoffAfter(.seconds)
).receiveSignal {
case (state, RecoveryCompleted) =>
ctx.log.info("**************Recovery Completed with state: {}***************",state)
case (state, SnapshotCompleted(meta)) =>
ctx.log.info("**************Snapshot Completed with state: {},id({},{})***************",state,meta.persistenceId, meta.sequenceNr)
case (state,RecoveryFailed(err)) =>
ctx.log.error("*************recovery failed with: {}***************",err.getMessage)
case (state,SnapshotFailed(meta,err)) =>
ctx.log.error("***************snapshoting failed with: {}*************",err.getMessage)
}.snapshotWhen(takeSnapShot)
}
).onFailure(
SupervisorStrategy
.restartWithBackoff(minBackoff = .seconds, maxBackoff = .seconds, randomFactor = 0.1)
.withMaxRestarts()
.withResetBackoffAfter(.seconds)
)
}
object Service {
val routerServiceKey = ServiceKey[WorkerRoutee.Command]("workers-router") sealed trait Command extends CborSerializable case class ProcessText(text: String) extends Command {
require(text.nonEmpty)
} case class WrappedResult(res: Aggregator.Response) extends Command def serviceBehavior(workersRouter: ActorRef[WorkerRoutee.Command]): Behavior[Command] = Behaviors.setup[Command] { ctx =>
val aggregator = ctx.spawn(Aggregator(), "aggregator")
val aggregatorRef: ActorRef[Aggregator.Response] = ctx.messageAdapter(WrappedResult)
Behaviors.receiveMessage {
case ProcessText(text) =>
ctx.log.info("******************** received ProcessText command: {} ****************",text)
val words = text.split(' ').toIndexedSeq
aggregator ! Aggregator.CountText(words.size, aggregatorRef)
words.foreach { word =>
workersRouter ! WorkerRoutee.Count(word, aggregator)
}
Behaviors.same
case WrappedResult(msg) =>
msg match {
case Aggregator.Result(res) =>
ctx.log.info("************** mean length of words = {} **********", res)
}
Behaviors.same
}
} def singletonService(ctx: ActorContext[Command], workersRouter: ActorRef[WorkerRoutee.Command]) = {
val singletonSettings = ClusterSingletonSettings(ctx.system)
.withRole("front")
SingletonActor(
Behaviors.supervise(
serviceBehavior(workersRouter)
).onFailure(
SupervisorStrategy
.restartWithBackoff(minBackoff = .seconds, maxBackoff = .seconds, randomFactor = 0.1)
.withMaxRestarts()
.withResetBackoffAfter(.seconds)
)
, "singletonActor"
).withSettings(singletonSettings)
} def apply(): Behavior[Command] = Behaviors.setup[Command] { ctx =>
val cluster = Cluster(ctx.system)
val workersRouter = ctx.spawn(
Routers.group(routerServiceKey)
.withRoundRobinRouting(),
"workersRouter"
)
( until ).foreach { n =>
val routee = ctx.spawn(WorkerRoutee(cluster.selfMember.address.toString), s"work-routee-$n")
ctx.system.receptionist ! Receptionist.register(routerServiceKey, routee)
}
val singletonActor = ClusterSingleton(ctx.system).init(singletonService(ctx, workersRouter))
Behaviors.receiveMessage {
case job@ProcessText(text) =>
singletonActor ! job
Behaviors.same
}
} } object LoadBalance {
def main(args: Array[String]): Unit = {
if (args.isEmpty) {
startup("compute", )
startup("compute", )
startup("compute", )
startup("front", )
} else {
require(args.size == , "Usage: role port")
startup(args(), args().toInt)
}
} def startup(role: String, port: Int): Unit = {
// Override the configuration of the port when specified as program argument
val config = ConfigFactory
.parseString(s"""
akka.remote.artery.canonical.port=$port
akka.cluster.roles = [$role]
""")
.withFallback(ConfigFactory.load("cluster-persistence")) val frontEnd = ActorSystem[Service.Command](Service(), "ClusterSystem", config)
if (role == "front") {
println("*************** sending ProcessText command ************")
frontEnd ! Service.ProcessText("this is the text that will be analyzed")
} } }

cluster-persistence.conf

akka.actor.allow-java-serialization = on
akka {
loglevel = INFO
actor {
provider = cluster
serialization-bindings {
"com.learn.akka.CborSerializable" = jackson-cbor
}
}
remote {
artery {
canonical.hostname = "127.0.0.1"
canonical.port =
}
}
cluster {
seed-nodes = [
"akka://ClusterSystem@127.0.0.1:25251",
"akka://ClusterSystem@127.0.0.1:25252"]
}
# use Cassandra to store both snapshots and the events of the persistent actors
persistence {
journal.plugin = "akka.persistence.cassandra.journal"
snapshot-store.plugin = "akka.persistence.cassandra.snapshot"
}
}
akka.persistence.cassandra {
# don't use autocreate in production
journal.keyspace = "poc"
journal.keyspace-autocreate = on
journal.tables-autocreate = on
snapshot.keyspace = "poc_snapshot"
snapshot.keyspace-autocreate = on
snapshot.tables-autocreate = on
} datastax-java-driver {
basic.contact-points = ["192.168.11.189:9042"]
basic.load-balancing-policy.local-datacenter = "datacenter1"
}

build.sbt

name := "learn-akka-typed"

version := "0.1"

scalaVersion := "2.13.1"
scalacOptions in Compile ++= Seq("-deprecation", "-feature", "-unchecked", "-Xlog-reflective-calls", "-Xlint")
javacOptions in Compile ++= Seq("-Xlint:unchecked", "-Xlint:deprecation") val AkkaVersion = "2.6.5"
val AkkaPersistenceCassandraVersion = "1.0.0" libraryDependencies ++= Seq(
"com.typesafe.akka" %% "akka-cluster-sharding-typed" % AkkaVersion,
"com.typesafe.akka" %% "akka-persistence-typed" % AkkaVersion,
"com.typesafe.akka" %% "akka-persistence-query" % AkkaVersion,
"com.typesafe.akka" %% "akka-serialization-jackson" % AkkaVersion,
"com.typesafe.akka" %% "akka-persistence-cassandra" % AkkaPersistenceCassandraVersion,
"com.typesafe.akka" %% "akka-slf4j" % AkkaVersion,
"ch.qos.logback" % "logback-classic" % "1.2.3"
)

akka-typed(6) - cluster:group router, cluster-load-balancing的更多相关文章

  1. Akka(5): ConsistentHashing Router - 可选定Routee的任务分配模式

    上一篇讨论里我们介绍了几种任务分配(Routing)模式.Akka提供的几种现成智能化Routing模式大多数是通过对用户屏蔽具体的运算Routee选择方式来简化Router使用,提高智能程度,所以我 ...

  2. Scalable MySQL Cluster with Master-Slave Replication, ProxySQL Load Balancing and Orchestrator

    MySQL is one of the most popular open-source relational databases, used by lots of projects around t ...

  3. bzoj千题计划180:bzoj4411: [Usaco2016 Feb]Load balancing

    http://www.lydsy.com/JudgeOnline/problem.php?id=4411 用树状数组维护扫描线 一个树状数组维护扫描线之上的y<=i点,另一个维护扫描线之下y&l ...

  4. Akka(10): 分布式运算:集群-Cluster

    Akka-Cluster可以在一部物理机或一组网络连接的服务器上搭建部署.用Akka开发同一版本的分布式程序可以在任何硬件环境中运行,这样我们就可以确定以Akka分布式程序作为标准的编程方式了. 在上 ...

  5. akka-typed(7) - cluster:sharding, 集群分片

    在使用akka-typed的过程中发现有很多地方都简化了不少,变得更方便了,包括:Supervision,只要用Behaviors.supervise()把Behavior包住,很容易就可以实现这个a ...

  6. Akka Typed系列:协议&行为

    引言 2019年11月6号LightBend公司发布了AKKA 2.6版本,带来了类型安全的actor,新的Akka Cluster底层通信设施——Artery,带来了更好的稳定性,使用Jackson ...

  7. kka-typed(5) - cluster:集群节点状态监视

    akka-cluster对每个节点的每种状态变化都会在系统消息队列里发布相关的事件.通过订阅有关节点状态变化的消息就可以获取每个节点的状态.这部分已经在之前关于akka-cluster的讨论里介绍过了 ...

  8. Java连接ArtemisMQ,出现Timed out waiting to receive cluster topology. Group:null异常

    完整异常内容:org.springframework.jms.UncategorizedJmsException: Uncategorized exception occurred during JM ...

  9. [Spark内核] 第31课:Spark资源调度分配内幕天机彻底解密:Driver在Cluster模式下的启动、两种不同的资源调度方式源码彻底解析、资源调度内幕总结

    本課主題 Master 资源调度的源码鉴赏 [引言部份:你希望读者看完这篇博客后有那些启发.学到什么样的知识点] 更新中...... 资源调度管理 任务调度与资源是通过 DAGScheduler.Ta ...

随机推荐

  1. javaWeb普通类获取ApplicationContext

    网上看了很多关于获取ApplicationContext的方法,五大方法,但是我用web服务使用成功的就这一个,自己记忆下. import javax.servlet.ServletContextEv ...

  2. CS0016: 未能写入输出文件“c:\Windows\Microsoft.NET\Framework\v4.0.30319\Temporary ASP.NET Files\root\ad888a2

    http://wenwen.sogou.com/z/q445150234.htm IIS_USRS

  3. 王艳 201771010127《面向对象程序设计(java)》第六周学习总结

    实验六 继承定义与使用 一:理论部分: 第五章:继承类. 1.继承:已有类来构建新类的一种机制.档定义了一个新类继承另一个类时,这个新类就继承了这个类的方法和域,同时在新类中添加新的方法和域以适应新的 ...

  4. 哈理工新生赛 马拉车+贪心 最大密度子图 AC自动机+DP

    J.Symmys Time Limit: 1000 MS Memory Limit: 262144 K Total Submit: 50 (13 users) Total Accepted: 2 (2 ...

  5. 【Java】手把手模拟CAS,瞬间理解CAS的机制

    话不多少,先看个案例,[模拟100个用户,每个用户访问10次网站]”: public class ThreadDemo1 { //总访问量 ; //模拟访问的方法 public static void ...

  6. Spring MVC必须知道的执行流程

    Spring MVC的执行流程 一.名词解释 1.前端控制器(DispatcherServlet) 接收请求,响应结果,相当于转发器,中央处理器 2.处理器映射器(HandlerMapping) 根据 ...

  7. 玩转Nginx location配置

    原文链接:https://mp.weixin.qq.com/s/kaEtfmX9bVdKfCVY6gbOsQ 建议点击原文链接查看 nginx是一个跨平台的web服务器, 基于事件驱动的架构并发处理百 ...

  8. VMware Workstation如何修改弹出释放快捷键

    VMware Workstation默认使用Ctrl+Alt键就可以将鼠标从虚拟机脱离出来. 但有时这2个键可能会和其他软件的快捷键冲突,这时候如何设置快捷键呢: 打开WMware Workstati ...

  9. pyinstaller打包pyqt5,从入坑到填坑,详解

    以上省略pyinstaller安装步骤,直入主题.先分享我的心路历程. 1.pyinstaller -F -i 1.ico UI_Main.py (先在CMD中 cd到 py文件对应的路径) 第一步打 ...

  10. 使用jQuery实现Ajax

    jQuery对Ajax操作进行了封装,在jQuery中最底层的方法是$.ajax(), 第二层是load(),  $.get(),  $.post() 第三层是$.getScript(),   $.g ...