ODS
数据调研
数据范围
主题元素
简单说:
DW
数据仓库存储是一个面向主题的,反映历史变化数据,用于支撑管理决策。
ODS
操作型数据存储,存储的是当前的数据情况,给使用者提供当前的状态,提供即时性的、操作性的、集成的全体信息的需求。
ODS作为数据库到数据仓库的一种过渡形式,与数据仓库在物理结构上不同,能提供高性能的响应时间,ODS设计采用混合设计方式。
ODS中的数据是"实时值",而数据仓库的数据却是"历史值",一般ODS中储存的数据不超过一个月,而数据仓库为10年或更多.
Data Mart
为了特定的应用目的或应用范围,而从数据仓库中独立出来的一部分数据,也可称为部门数据或主题数据(subjectarea)。在数据仓库的实施过程中往往可以从一个部门的数据集市着手,以后再用几个数据集市组成一个完整的数据仓库。需要注意的就是在实施不同的数据集市时,同一含义的字段定义一定要相容,这样再以后实施数据仓库时才不会造成大麻烦。
DDS(decision-support system)决策支持系统:
用于支持管理决策的系统。通常,DSS包括以启发的方式对大量的数据单元进行的分析,通常不涉及数据更新。
参考一:http://www.cnblogs.com/liqiu/p/4947801.html
(本部分为转)我在公司的数据部门工作,每天的订单类数据处理流程大致如下:
- 删除分析数据库的历史订单数据
- 全量更新订单数据到分析数据库。(由于订单核心数据不大,所以经受得起这么折腾)
- 将数据简单清洗,并生成数据集市层
- 分析处理,产出报表。当然还有其他的数据也是这么处理的(比如产品的数据、景区的数据、票种的数据、供应商的数据等等)
还有日志类的数据,这里不是重点,就不介绍了!这么干了一年,发现有如下问题:
- 业务变化很快,比如业务数据表经常变化字段含义、增加各种逻辑数据等
- 业务数据源越来越多,随着品类越来越多,新部门逐步成立,数据源也就越来越多样化
- 需求越来越多,越来越复杂,以前只有大佬想我们要战略数据,可是现在所有的产品和运营都向我们要各种各样的用户行为数据、订单分析数据和竞对优势数据
- 数据的实时行要求越来越高,这到不是说秒级别就看见结果,而是早晨提出个新业务数据需求,晚上就要!
数据毕竟是为了市场服务的,所以需求我们要跟上它的节奏,这就对数据系统提出了很大的挑战,导致数据质量下降、生产效率下降!该怎么解决哪?在解决这个问题的过程中,逐步发现了一点苗头:发现我们建立的数据仓库与它的定义不太符合。下面是数据仓库的定义:
数据仓库(Data Warehouse):是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。
很明显我们并不符合相对稳定的和反应历史变化的两个条件,因为类似订单类数据,每天全量更新(原因是同一个订单状态随着时间会变化,比如今天买了,明天退货了)。这就明显不符合想对稳定这一概念了,更别说反应历史变化了!经过最近的思考,发现自己搭建的系统更符合ODS的定义:
ODS:是一个面向主题的、集成的、可变的、当前的细节数据集合,用于支持企业对于即时性的、操作性的、集成的全体信息的需求。
那么大家可能会问ods和数据仓库的区别是什么哪?答:ods是短期的实时的数据,供产品或者运营人员日常使用,而数据仓库是供战略决策使用的数据;ods是可以更新的数据,数据仓库是基本不更新的反应历史变化的数据,还有很多,这里就不一一列举了。
讲到这里问题就明晰了,如何能搭建一个体系,既能支持战略决策使用的数据仓库数据,又能兼容业务快速的变化和运营产品人员日常需求的ODS数据哪?
数据仓库和ODS并存方案
经过调研,发现大体上有三种解法:
1、业务数据 - ODS - 数据仓库
优点:这样做的好处是ODS的数据与数据仓库的数据高度统一;开发成本低,至少开发一次并应用到ODS即可;可见ODS是发挥承上启下的作用,调研阿里巴巴的数据部门也是这么实现的。
缺点:数据仓库需要的所有数据都需要走ODS,那么ODS的灵活性必然受到影响,甚至不利于扩展、系统的灵活性差
2、OB - ODS
优点:结构简单。一般的初创数据分析团队都是类似的结构,比如我们部门就应该归结到这一范畴
缺点:这样所有数据都归结到ODS,长期数据决策分析能力差,软硬件成本高,模块划分不清晰,通用性差
3、数据仓库和ODS并行
可见这个模型兼顾了上面提高的各自优点,且便于扩展,ODS和数据仓库各做各的,形成优势互补!可以解决现在互联网公司遇到的快速变化、快速开发等特点!特别是对于那些刚刚创建数据团队,数据开发人员紧缺的公司,可以尝试使用这个数据架构解决问题!
参考2:
http://blog.csdn.net/hero_hegang/article/details/8691912
背景知识:在当今这样一个信息技术发展迅速的时代,数据量也在不断的增长,面临这样的压力,总是会有大神提出一些解决方案。比如高层管理人员希望能查看整个公司的发展业绩,数据仓库(Data Warehouse, DW)正是解决该问题的主要方案,随之DW就这样产生了。可是时代在变,需求也会随着改变,比如保险公司的员工希望提高自己的业绩,拿更多的工资,那么他首先希望的就是能把更多的客户挖进来,其实这其中是有很多方法的。最基本的例子,比方说某保险公司的一个客服希望能够以最高的成功率向客户推荐相关的业务,一旦客户来电,客服可以立刻从数据库中调出该客户的相关的一连串信息,从而可以根据这些信息有针对性的向客户推荐相关的业务了,显然,这样的推荐方式明显可以提高成功率。那么问题就来了,怎么解决这样的问题呢?随之,操作型数据存储(Operational Data Store, ODS)的诞生给此类问题提供了良好的解决方案。从理论上讲,这两种解决方案到底有什么区别呢?现在进入正题。
ODS与DW的区别主要有以下几点:
1、数据的当前性
ODS包括的是当前或接近当前的数据,ODS反映的是当前业务条件的状态,ODS的设计与用户或业务的需要是有关联的,而DW则是更多的反映业务条件的历史数据。
2、数据的更新或加载
ODS中的数据是可以进行修改的,而DW中的数据一般是不进行更新的。ODS的更新是根据业务的需要进行操作的,而没有必要立即更新,因此它需要一种实时或近实时的更新机制。另外,DW中的数据是按照正常的或预先指定的时间进行数据的收集和加载的。
3、数据的汇总性
ODS主要是包括一些细节数据,但是由于性能的需要,可能还包括一些汇总数据,如果包括汇总数据,可能很难保证数据的当前性和准确性。ODS中的汇总数据生命周期比较短,所以可称作为动态汇总数据,如果细节数据经过了修改,则汇总数据同样需要修改。而DW中的数据可称为静态的汇总数据。
4、数据建模
ODS是站在记录层面访问的角度而设计的,DW或DM则是站在结果集层面访问的角度而设计的。ODS支持快速的数据更新,DW作为一个整体是面向查询的。
5、查询的事务
ODS中的事务操作比较多,可能一天中会不断的执行相同的事务,而DW中事务的到达是可以预测的。
6、用途
ODS用于每一天的操作型决策,是一种短期的;DW可以获取一种长期的合作广泛的决策。ODS是策略型的,DW是战略型的。
7、用户
ODS主要用于策略型的用户,比如保险公司每天与客户交流的客服;而DW主要用于战略型的用户,比如公司的高层管理人员。
8、数据量(主要区别之一)
ODS只是包括当前数据,而DW存储的是每一个主题的历史快照;
ODS的更多相关文章
- 转载:ODS简介
什么是ODS? 信息处理的多层次要求导致了一种新的数据环境——DB-DW的中间层ODS(操作型数据存储)的出现.ODS是“面向主题的.集成的.当前或接近当前的.不断变化的”数据.通过统一规划,规范框架 ...
- 数据仓库与ODS的区别
我在公司的数据部门工作,每天的订单类数据处理流程大致如下: 删除分析数据库的历史订单数据 全量更新订单数据到分析数据库.(由于订单核心数据不大,所以经受得起这么折腾) 将数据简单清洗,并生成数据集市层 ...
- ODS浅谈
ODS和DW 根据Bill.Inmon的定义,“数据仓库是面向主题的.集成的.稳定的.随时间变化的,主要用于决策支持的数据库系统” : ODS (Operational Data Store)操作型 ...
- 浅析ODS与EDW关系(转载)
浅析ODS与EDW 关系 刘智琼 (中国电信集团广州研究院广州510630) 摘要 本文重点介绍了企业运营数据仓储(ODS)和企业数据仓库(EDW )的概念,并对ODS与EDW 之间的关系,包括两者相 ...
- DW,DM,ODS的区别
数据仓库的重要应用是将不同来源的数据和异构数据通过ETL整合在一起,为决策分析提供支撑,若在同一个数据库中分不同用户,此意义不大:假设所有有用户都在一个数据库里,如果因为某个原因数据库重启,那么会影响 ...
- ODS ,EDW,DM
ODS: 操作数据存储ODS(Operational Data Store),操作型数据仓库,最早的数据仓库模型,是数据仓库体系结构中的一个可选部分,ODS具备数据仓库的部分特征和OLTP系统的部分特 ...
- ODS、DW和DM
参考资料: 数据仓库ODS.DW和DM概念区分:https://www.jianshu.com/p/72e395d8cb33
- 数仓1.1 分层| ODS& DWD层
数仓分层 ODS:Operation Data Store原始数据 DWD(数据清洗/DWI) data warehouse detail数据明细详情,去除空值,脏数据,超过极限范围的明细解析具体表 ...
- 数据仓库分层ODS DW DM 主题 标签
数据仓库知识之ODS/DW/DM - xingchaojun的专栏 - CSDN博客 数据仓库为什么要分层 - 晨柳溪 - 博客园 数据仓库的架构与设计 - Trigl的博客 - CSDN博客 数据仓 ...
- ODS与DW之间的关系
1.什么是数据仓库? 数据仓库是面向主题的.集成的.相对稳定的.反应历史变化的数据集合,主要用于决策支持和信息的全局共享. 时效:T+1 2.什么是ODS? ODS全称为Operational Dat ...
随机推荐
- mongodb更新器
Name Description $inc Increments the value of the field by the specified amount. $mul Multiplies the ...
- UVa10099_The Tourist Guide(最短路/floyd)(小白书图论专题)
解题报告 题意: 有一个旅游团如今去出游玩,如今有n个城市,m条路.因为每一条路上面规定了最多可以通过的人数,如今想问这个旅游团人数已知的情况下最少须要运送几趟 思路: 求出发点到终点全部路其中最小值 ...
- jq和thinkphp经常使用的几种ajax
第一种方法 第二种方法 jquery方法: MessageAction.class.php <?php class MessageAction extends Action{ functio ...
- Spring MVC生成PDF文件
以下示例演示如何使用Spring Web MVC框架生成PDF格式的文件.首先使用Eclipse IDE,并按照以下步骤使用Spring Web Framework开发基于动态表单的Web应用程序: ...
- Spark OOM:java heap space,OOM:GC overhead limit exceeded解决方法
问题描述: 在使用spark过程中,有时会因为数据增大,而出现下面两种错误: java.lang.OutOfMemoryError: Java heap space java.lang.OutOfMe ...
- Linux网络编程(一)基础
一.数据存储顺序:大端和小端 大端模式: 地址的增长顺序与值的增长顺序相反 小段模式: 地址的增长顺序与值的增长顺序同样 为什么会有大小端模式之分呢?这是由于在计算机系统中,我们是以字 ...
- Windows API之DuplicateHandle
在进程之间共享内核对象句柄的一种方法:DuplicateHandle 简单地说,该函数取得某个进程句柄表中的一个表项,然后把它拷贝到另一个进程的句柄表中. BOOL WINAPI DuplicateH ...
- C#安装,启动,停止,卸载Windows服务
public class OptionServices { //安装服务 public static void InstallService(string filep ...
- Android———最详细的系统对话框(AlertDialog)详解
在实际应用开发中,用到系统对话框中的情况几乎是没有的.按开发流程来说,UI工程师都会给出每一个弹窗的样式,故而在实际开发中都是自定义弹窗的. 即使用到的地方不多,但是我们也是需要了解并且能熟练的运用它 ...
- cocos2d-x-3.1rc0中找不到"extensions/ExtensionMacros.h"的问题
笔者导入UI编辑器的资源时,提示无法打开包括文件:“extensions/ExtensionMacros.h”: No such file or directory” 然后参考了3.0的一篇文章.得出 ...