任意门:http://poj.org/problem?id=1330

Nearest Common Ancestors

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 34942   Accepted: 17695

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

题意概括:

给一棵有N个节点,N-1条边的树 和 一对结点,求这对结点的最近公共祖先。

解题思路:

找根结点用一个标记数组

找公共祖先用简单粗暴的 Tarjan。

AC code:

 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
const int MAXN = 1e4+;
struct Edge{int v, next;}edge[MAXN<<];
int head[MAXN], cnt;
int fa[MAXN];
bool in[MAXN];
bool vis[MAXN];
int N, M, S, ans, a, b; inline void init()
{
memset(head, -, sizeof(head));
memset(vis, false, sizeof(vis));
memset(in, false, sizeof(in));
cnt = ;
} inline void AddEdge(int from, int to)
{
edge[cnt].v = to;
edge[cnt].next = head[from];
head[from] = cnt++;
} int findset(int x)
{
int root = x;
while(fa[root] != root) root = fa[root]; int tmp;
while(fa[x] != root){
tmp = fa[x];
fa[x] = root;
x = tmp;
}
return root;
} void Tarjan(int s)
{
fa[s] = s;
for(int i = head[s]; i != -; i = edge[i].next){
int Eiv = edge[i].v;
Tarjan(Eiv);
fa[findset(Eiv)] = s;
}
vis[s] = true;
if(s == a){
if(vis[a] && vis[b]) ans = findset(b);
}
else if(s == b){
if(vis[a] && vis[b]) ans = findset(a);
}
} int main()
{
int T_case, u, v;
scanf("%d", &T_case);
while(T_case--)
{
init();
scanf("%d", &N);
M = N-;
for(int i = ; i <= M; i++){
scanf("%d %d", &u, &v);
AddEdge(u, v);
in[v] = true;
//AddEdge(v, u);
}
scanf("%d %d", &a, &b);
int root = ;
for(int i = ; i <= N; i++){
if(!in[i]){root = i;break;}
}
Tarjan(root);
printf("%d\n", ans);
}
return ;
}

POJ 1330 Nearest Common Ancestors 【LCA模板题】的更多相关文章

  1. POJ 1330 Nearest Common Ancestors(LCA模板)

    给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...

  2. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  3. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  4. poj 1330 Nearest Common Ancestors lca 在线rmq

    Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...

  5. poj 1330 Nearest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...

  6. POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)

    /* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...

  7. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  8. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  9. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  10. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

随机推荐

  1. apply、call、bind区别、用法

    apply和call都是为了改变某个函数运行时的上下文而存在的(就是为了改变函数内部this的指向):   如果使用apply或call方法,那么this指向他们的第一个参数,apply的第二个参数是 ...

  2. linux 下安装 mysql 并配置 python 开发环境

    1.安装 mysql ,安装过程中将提示设置 root 用户的密码,默认可以设置为 rootadmin . $ sudo apt-get install mysql-server 2.安装 mysql ...

  3. springsource-tool-suite下载(sts)

    1 新版本的插件下载 1 直接进入官网下载即可 官网地址:http://spring.io/tools/sts/all. 2 spring官网上下载历史版本的spring插件 1 获取新版本的插件的地 ...

  4. React.js 小书 Lesson8 - 组件的组合、嵌套和组件树

    作者:胡子大哈 原文链接:http://huziketang.com/books/react/lesson8 转载请注明出处,保留原文链接和作者信息. 继续拓展前面的例子,现在我们已经有了 Heade ...

  5. 操蛋的Django model------select_related() 主要用于一对一和一对多

    实例: 创建表,表都是一对一,一对多 class Province(models.Model): name = models.CharField(max_length=10) class City(m ...

  6. js根据子目录数目显示父级目录

    需求:<ul>中<li>数量为0,则不显示<ul>以及<b>:<div>中<ul>数量为0,则不显示<div> 1. ...

  7. 了解WaitForSingleObject中WAIT_ABANDONED 返回值

    1.互斥量内核对象 互斥量内核对象用来确保一个线程独占对一个资源的访问.互斥量对象包含一个使用计数.线程ID以及递归计数.互斥量与关键段的行为完全相同.但是互斥量是内核对象,而关键段是用户模式下的同步 ...

  8. Java ConcurrentHashMap的小测试

    今天正式开始自己的分布式学习,在第一章介绍多线程工作模式时,作者抛出了一段关于ConcurrentHashMap代码让我很是疑惑,代码如下: public class TestClass { priv ...

  9. hdu 1513 添最少字回文 (Lcs 滚动数组)

    http://blog.csdn.net/ice_crazy/article/details/8244639 这里5000*5000超出内存,所以需要用滚动数组: 用一个now表示当前的结果,pre表 ...

  10. js变量定义提升、this指针指向、运算符优先级、原型、继承、全局变量污染、对象属性及原型属性优先级

    原文出自:http://www.cnblogs.com/xxcanghai/p/5189353.html作者:小小沧海 题目如下: function Foo() { getName = functio ...