洛谷P5274 优化题(ccj)

题目背景

CCJCCJ 在前往参加 Universe \ OIUniverse OI 的途中。。。

题目描述

有一个神犇 CCJCCJ,他在前往参加 Universe \ OIUniverse OI 的途中发现了一个超星系群。

在这个超星系群,有着一群生物 ccjccj,他们有着神奇的 ccjccj 文化,蕴含文史哲艺等多方面内容,具有悠远的历史。

他们有自己的文学,自己的科学,当然,还有自己的四叶草和幸运数。在 ccjccj 文化中,不断进化是生存的必要条件,于是在这个星系群中,有 kk种数字,一个数是幸运数,当且仅当该数中从高位往低位每个数位上的数字单调不降。

CCJCCJ 想考验这个超星系群,于是有了一个任务:求由 kk 种数字组成的数中 nn 位数的幸运数的个数。

由于 ccjccj 文化中缺少超级计算机,你需要帮助他们解决这个简单的问题。

输入输出格式

输入格式:

第一行一个整数opop,表示该测试点所属SubtaskSubtask的编号。其中op=0op=0表示样例。
第二行两个整数,nn,kk,意义如题目描述中所述。

输出格式:

一行一个整数,答案ansans对1000001910000019取模。

输入输出样例

输入样例#1:

0
9 9
输出样例#1:

24310
输入样例#2:

0
15 24
输出样例#2:

1257167

说明

数据范围:
Subtask \ 1Subtask 1(10 \%10%):n \leq 1000n≤1000,k \leq 200k≤200;
Subtask \ 2Subtask 2(40 \%40%):n \leq 10000n≤10000,k \leq 5000k≤5000;
Subtask \ 3Subtask 3(40 \%40%):n \leq 10000000n≤10000000,k \leq 10000000k≤10000000;
Subtask \ 4Subtask 4(10 \%10%):n \leq 10^{18}n≤1018,k \leq 10^{18}k≤1018;
Subtask \ 5Subtask 5(0 \%0%):n \leq 10^{100000}n≤10100000,k \leq 10^{100000}k≤10100000。


题解Here!

从$k$个数中任选若干个,求单调不降序列的个数。

单调不降有点烦,我们将选出来的序列中每一位$i$上的数都加上$i$。

即:原数列为${a_i}$,新数列为${b_i=a_i+i}$。

于是变成:

从$n+k-1$个数中任选若干个,求单调上升序列的个数。

于是这个题的答案就是:$$Ans=C_{n+k-1}^n$$

直接$Lucas$即可。

附代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#define MAXN 10000050
#define MOD 10000019LL
using namespace std;
long long n,k;
long long fact[MAXN],inv[MAXN];
inline long long read(){
long long date=0;char c=0;
while(c<'0'||c>'9')c=getchar();
while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
return date;
}
long long mexp(long long a,long long b,long long c){
long long s=1;
while(b){
if(b&1)s=s*a%c;
a=a*a%c;
b>>=1;
}
return s;
}
void make(){
int m=MOD-1;
fact[0]=1;
for(int i=1;i<=m;i++)fact[i]=fact[i-1]*i%MOD;
inv[m]=mexp(fact[m],MOD-2,MOD);
for(int i=m-1;i>=0;i--)inv[i]=inv[i+1]*(i+1)%MOD;
}
inline long long C(long long n,long long m){
if(n<m)return 0;
if(m==0||m==n)return 1;
if(m==1||m==n-1)return n;
return fact[n]*inv[m]%MOD*inv[n-m]%MOD;
}
long long Lucas(long long n,long long m){
if(n<m)return 0;
if(m==0||m==n)return 1;
if(m==1||m==n-1)return n;
return Lucas(n/MOD,m/MOD)*C(n%MOD,m%MOD)%MOD;
}
int main(){
int t=read();
make();
n=read();k=read();
printf("%lld\n",Lucas(n+k-1,n));
return 0;
}

洛谷P5274 优化题(ccj)的更多相关文章

  1. [洛谷P1707] 刷题比赛

    洛谷题目连接:刷题比赛 题目背景 nodgd是一个喜欢写程序的同学,前不久洛谷OJ横空出世,nodgd同学当然第一时间来到洛谷OJ刷题.于是发生了一系列有趣的事情,他就打算用这些事情来出题恶心大家-- ...

  2. 洛谷 P4148 简单题 KD-Tree 模板题

    Code: //洛谷 P4148 简单题 KD-Tree 模板题 #include <cstdio> #include <algorithm> #include <cst ...

  3. 洛谷 P1167 刷题

    洛谷 P1167 刷题 洛谷传送门 题目描述 noip临近了,小A却发现他已经不会写题了.好在现在离竞赛还有一段时间,小A决定从现在开始夜以继日地刷题.也就是说小A废寝忘食,一天二十四小时地刷题. 今 ...

  4. 【noip】跟着洛谷刷noip题2

    noip好难呀. 上一个感觉有点长了,重开一个. 36.Vigenère 密码 粘个Openjudge上的代码 #include<cstdio> #include<iostream& ...

  5. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  6. 【noip】跟着洛谷刷noip题

    传送门 1.铺地毯 d1t1 模拟 //Twenty #include<cstdio> #include<cstdlib> #include<iostream> # ...

  7. 山东省济南市历城第二中学——洛谷图论入门题--基本题必做 图的遍历—3.骑马修栅栏(fence)

    由于我这个破题提交了十四五遍,所以我决定写篇博客来记录一下. 这个题的题目描述是这样的 首先一看这个题我瞬间就想到了一笔画问题(欧拉回路). 对于能够一笔画的图,我们有以下两个定理. 定理1:存在欧拉 ...

  8. 【最大流ISAP】洛谷P3376模板题

    题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行 ...

  9. 【后缀数组】洛谷P3809模板题

    题目背景 这是一道模板题. 题目描述 读入一个长度为 n n n 的由大小写英文字母或数字组成的字符串,请把这个字符串的所有非空后缀按字典序从小到大排序,然后按顺序输出后缀的第一个字符在原串中的位置. ...

随机推荐

  1. applicationContext.xml 文件头报错Referenced file contains errors

    问题如下:原先运行正常的项目,突然在applicationContext.xml 文件头报错 内容:Referenced file contains errors (http://www.spring ...

  2. EF实体查询出的数据List<T>转DataTable出现【DataSet 不支持 System.Nullable<>】的问题

    public static DataTable ToDataTable<T>(this IEnumerable<T> varlist, CreateRowDelegate< ...

  3. HTML学习笔记(四)

    1.       css行内样式要注意的问题: a)     stylekeyword要作为标签的一个属性写在标签内: b)     等号后面是一对双引號包括的内容. c)      Style属性和 ...

  4. Backup and Recovery Basics1

    一.Backup and Recovery Overview 1.Backup and Recovery Overview 1.1 What is Backup and Recovery? 一般,备份 ...

  5. Charles 的几个调试技巧

    Charles 是一个网络调试的代理工具,类似 Windows 下的 Fildder,这里介绍下几个常用的调试技巧,使用的版本是 Charles 4. 1.移动端抓包 在移动开发中,经常会遇到在手机上 ...

  6. mysql5.7.22 zip 版安装

    2.将zip文件解压到本地,本文解压到如下目录:D:\softwares\mysql-5.7.14-winx64 3.新建一个配置文件(my.ini)用于配置字符集.端口等信息,用以覆盖原始的配置文件 ...

  7. [Tomcat]无法使用tomcat6.exe启动服务解决办法, The system cannot find the Registry key for service 'tomcat7'

    重新配置环境变量后,可以使用startup.bat启动服务, 但是无法使用tomcat6.exe启动服务, 错误信息: [2011-03-10 18:51:49] [warn]  The system ...

  8. java 调用cmd命令

    public class Port{ public static void main(String[] args) { Runtime runtime=Runtime.getRuntime(); tr ...

  9. Python 双向链表 快速排序

    1.创建链表: from random import randint class DLinkedNode(object): def __init__(self, data=None, pre=None ...

  10. sqoop1.4.4从oracle导数据到hive中

    sqoop从oracle定时增量导入数据到hive 感谢: http://blog.sina.com.cn/s/blog_3fe961ae01019a4l.htmlhttp://f.dataguru. ...