【洛谷2290】[HNOI2004] 树的计数(Python+利用prufer序列结论求解)
大致题意: 给定每个点的度数,让你求有多少种符合条件的无根树。
\(prufer\)序列
这显然是一道利用\(prufer\)序列求解的裸题。
考虑到由\(prufer\)序列得到的结论:对于给定度数为\(d_{1\sim n}\)的一棵无根树共有\(\frac{(n-2)!}{\prod_{i=1}^n(d_i-1)!}\)种情况。
套公式即可。
高精/质因数分解/\(Python\)
等等,答案小于\(10^{17}\)?
这看似在\(long\ long\)范围内,但是我们前面有除法啊!运算过程中肯定会爆\(long\ long\)!
然后就有\(3\)种做法:
- 高精。
- 质因数分解。即把每个质因数出现的次数记下来,然后除法就变成了减法。最后相乘即可。
- \(Python\)!自带高精,写这种题目的必备利器。
我自然是选择了\(Python\)。
顺带通过猜想+尝试学会了\(Python\)压行\(233333\)。
最后提醒一句,需要判无解!
代码
n=(int)(input())#读入n
if n==1:#特判n=1的情况
x=(int)(input());#读入唯一的节点度数
if x==0:print(1);#如果这个节点度数为0,说明只有一种解法
else:print(0);#否则,无解
exit();#退出程序
f=[0 for i in range(n+5)];f[0]=1;#建立阶乘数组
for i in range(1,n+1):f[i]=f[i-1]*i;#预处理阶乘
ans=f[n-2];tot=0;s=input().split();#初始化ans为(n-2)!,用tot统计度数和来判断是否无解
for i in range(n):
x=(int)(s[i]);
if x==0:print(0);exit();#如果存在某个点度数为0,说明图不连通,输出0
tot+=x-1;ans//=f[x-1];#统计度数和,更新答案
if(tot==n-2):print(ans);#如果度数和为n-2,输出ans
else:print(0);#否则无解
【洛谷2290】[HNOI2004] 树的计数(Python+利用prufer序列结论求解)的更多相关文章
- 【洛谷2624】[HNOI2008] 明明的烦恼(Python+利用prufer序列结论求解)
点此看题面 大致题意: 给你某些点的度数,其余点度数任意,让你求有多少种符合条件的无根树. \(prufer\)序列 一道弱化版的题目:[洛谷2290][HNOI2004] 树的计数. 这同样也是一道 ...
- [HNOI2004]树的计数 BZOJ 1211 prufer序列
题目描述 输入输出格式 输入格式: 输入文件第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输入数据保证满足条件的 ...
- 洛谷 P2290 [HNOI2004]树的计数
题目描述 输入输出格式 输入格式: 输入文件第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输入数据保证满足条件的 ...
- [bzoj3244] [洛谷P1232] [Noi2013] 树的计数
Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...
- 【洛谷2624_BZOJ1005】[HNOI2008] 明明的烦恼(Prufer序列_高精度_组合数学)
题目: 洛谷2624 分析: 本文中所有的 "树" 都是带标号的. 介绍一种把树变成一个序列的工具:Prufer 序列. 对于一棵 \(n\) 个结点的树,每次选出一个叶子(度数为 ...
- LUOGU P2290 [HNOI2004]树的计数(组合数,prufer序)
传送门 解题思路 \(prufer\)序,就是所有的不同的无根树,都可以转化为唯一的序列.做法就是每次从度数为\(1\)的点中选出一个字典序最小的,把这个点删掉,并把这个点相连的节点加入序列,直到只剩 ...
- P2290 [HNOI2004]树的计数(bzoj1211)
洛谷P2290 [HNOI2004]树的计数 bzoj1211 [HNOI2004]树的计数 Description 一个有\(n\)个结点的树,设它的结点分别为\(v_1,v_2,\cdots, v ...
- BZOJ1211: [HNOI2004]树的计数
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1245 Solved: 383[Submit][Statu ...
- BZOJ 1211: [HNOI2004]树的计数( 组合数学 )
知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! -------------------------------------- ...
随机推荐
- 基于云计算的IaaS、PaaS、SaaS三种服务模式的区别
Infrastructure-as-a-Service(IaaS) - 基础即设施服务 基础设施主要包括网络系统(networking).存储设备(storage).服务器(servers).虚拟化技 ...
- C. Molly's Chemicals
题目链接:http://codeforces.com/problemset/problem/776/C C. Molly's Chemicals time limit per test 2.5 sec ...
- MyISAM的前缀压缩索引在索引块中的组织方式
纯粹自己的理解,哪位大佬看到了还请指正. 首先贴一张<高性能MySQL>中的一段话: 这句话的意思是说,MyISAM使用b+树组织索引.也就是说无论索引压缩与否,组织方式一定是B+树. 下 ...
- hadoop-2.6.0.tar.gz + spark-1.6.1-bin-hadoop2.6.tgz的集群搭建(单节点)(CentOS系统)
福利 => 每天都推送 欢迎大家,关注微信扫码并加入我的4个微信公众号: 大数据躺过的坑 Java从入门到架构师 人工智能躺过的坑 Java全栈大联盟 ...
- 使用Amoeba for mysql实现mysql读写分离(测试可行)
Amoeba for MySQL致力于MySQL的分布式数据库前端代理层,它主要在应用层访问MySQL的时候充当query 路由功能,专注 分布式数据库 proxy 开发.座落与Client.DB S ...
- Oracle 数据类型详解
数据类型(datatype)是列(column)或存储过程中的一个属性. Oracle支持的数据类型可以分为三个基本种类:字符数据类型.数字数据类型以及表示其它数据的数据类型. 字符数据类型 CHAR ...
- [转]微信小程序开发系列(一)小程序开发初体验
本文转自:http://www.cnblogs.com/rennix/p/6287432.html 开发小程序所需的基本技能 关于小程序的介绍和使用场景这里不作介绍,这个系列的文章会一步一步地带领 ...
- Facade模式实现文件上传(Flash+HTML5)
一.前言 确定了渐进式增强的上传方式,接下来我们需要将上传功能从具体的业务逻辑中剥离出来,作为公共组件供业务层调用.这就要求我们必须对业务层隐藏上传细节,只暴露统一的上传API.这时候大家是不是跟我一 ...
- ireport 导出excel 分页 和 文本转数字格式的解决方法
景:ireport 画excel 报表,导出时要求 数据分页,每页包含 标题和页脚 1.画excel 2.处理分页 首先建立一个变量totalNum 用于记录总共有多少条记录,注意设置属性为Integ ...
- 编程语言的发展历史剧。(参考https://baijiahao.baidu.com/s?id=1588675986991787716&wfr=spider&for=pc)
1800年 约瑟夫·玛丽·雅卡尔(Joseph Marie Jacquard),设计出人类历史 上首台可设计织布机——雅卡尔织布机,对将来发展出其他可编程机器起了重要作用 1842年 阿达·洛夫莱斯( ...