【洛谷2290】[HNOI2004] 树的计数(Python+利用prufer序列结论求解)
大致题意: 给定每个点的度数,让你求有多少种符合条件的无根树。
\(prufer\)序列
这显然是一道利用\(prufer\)序列求解的裸题。
考虑到由\(prufer\)序列得到的结论:对于给定度数为\(d_{1\sim n}\)的一棵无根树共有\(\frac{(n-2)!}{\prod_{i=1}^n(d_i-1)!}\)种情况。
套公式即可。
高精/质因数分解/\(Python\)
等等,答案小于\(10^{17}\)?
这看似在\(long\ long\)范围内,但是我们前面有除法啊!运算过程中肯定会爆\(long\ long\)!
然后就有\(3\)种做法:
- 高精。
- 质因数分解。即把每个质因数出现的次数记下来,然后除法就变成了减法。最后相乘即可。
- \(Python\)!自带高精,写这种题目的必备利器。
我自然是选择了\(Python\)。
顺带通过猜想+尝试学会了\(Python\)压行\(233333\)。
最后提醒一句,需要判无解!
代码
n=(int)(input())#读入n
if n==1:#特判n=1的情况
x=(int)(input());#读入唯一的节点度数
if x==0:print(1);#如果这个节点度数为0,说明只有一种解法
else:print(0);#否则,无解
exit();#退出程序
f=[0 for i in range(n+5)];f[0]=1;#建立阶乘数组
for i in range(1,n+1):f[i]=f[i-1]*i;#预处理阶乘
ans=f[n-2];tot=0;s=input().split();#初始化ans为(n-2)!,用tot统计度数和来判断是否无解
for i in range(n):
x=(int)(s[i]);
if x==0:print(0);exit();#如果存在某个点度数为0,说明图不连通,输出0
tot+=x-1;ans//=f[x-1];#统计度数和,更新答案
if(tot==n-2):print(ans);#如果度数和为n-2,输出ans
else:print(0);#否则无解
【洛谷2290】[HNOI2004] 树的计数(Python+利用prufer序列结论求解)的更多相关文章
- 【洛谷2624】[HNOI2008] 明明的烦恼(Python+利用prufer序列结论求解)
点此看题面 大致题意: 给你某些点的度数,其余点度数任意,让你求有多少种符合条件的无根树. \(prufer\)序列 一道弱化版的题目:[洛谷2290][HNOI2004] 树的计数. 这同样也是一道 ...
- [HNOI2004]树的计数 BZOJ 1211 prufer序列
题目描述 输入输出格式 输入格式: 输入文件第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输入数据保证满足条件的 ...
- 洛谷 P2290 [HNOI2004]树的计数
题目描述 输入输出格式 输入格式: 输入文件第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输入数据保证满足条件的 ...
- [bzoj3244] [洛谷P1232] [Noi2013] 树的计数
Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...
- 【洛谷2624_BZOJ1005】[HNOI2008] 明明的烦恼(Prufer序列_高精度_组合数学)
题目: 洛谷2624 分析: 本文中所有的 "树" 都是带标号的. 介绍一种把树变成一个序列的工具:Prufer 序列. 对于一棵 \(n\) 个结点的树,每次选出一个叶子(度数为 ...
- LUOGU P2290 [HNOI2004]树的计数(组合数,prufer序)
传送门 解题思路 \(prufer\)序,就是所有的不同的无根树,都可以转化为唯一的序列.做法就是每次从度数为\(1\)的点中选出一个字典序最小的,把这个点删掉,并把这个点相连的节点加入序列,直到只剩 ...
- P2290 [HNOI2004]树的计数(bzoj1211)
洛谷P2290 [HNOI2004]树的计数 bzoj1211 [HNOI2004]树的计数 Description 一个有\(n\)个结点的树,设它的结点分别为\(v_1,v_2,\cdots, v ...
- BZOJ1211: [HNOI2004]树的计数
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1245 Solved: 383[Submit][Statu ...
- BZOJ 1211: [HNOI2004]树的计数( 组合数学 )
知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! -------------------------------------- ...
随机推荐
- input type=checkbox的值后台怎么接受
input type=checkbox的值是on或off 实体类中这样写即可 public void setChapterVisibility(Object chapterVisibility) { ...
- redis安装配置远程连接
一.安装redis linux上直接yum安装 yum install redis windows版本下载地址 https://github.com/ServiceStack/redis-window ...
- 01-spring配置详解
1 bean元素 <!--将User对象交给spring容器进行管理 --> <!-- Bean元素:使用该元素描述需要spring容器管理的对象 class属性:被管理对象的完整类 ...
- c#特性类 Attribute
Attribute FYI Link: Attribute在.net编程中的应用(一) Attribute在.net编程中的应用(二) Attribute在.net编程中的应用(三) Attribut ...
- [转]微信小程序开发(二)图片上传+服务端接收
本文转自:http://blog.csdn.net/sk719887916/article/details/54312573 文/YXJ 地址:http://blog.csdn.net/sk71988 ...
- [转]ASP.NET MVC中的两个Action之间值的传递--TempData
本文转自:ASP.NET MVC中的两个Action之间值的传递--TempData 一. ASP.NET MVC中的TempData 在ASP.NET MVC框架的ControllerBase中存在 ...
- C# ADO.NET 面向对象
ADO.NET跟面向对象的结合 把面向对象跟数据库连接用 在项目里面创建一个新的文件夹 名字为App_Code 在这个App_Code里面创建几个类 主要为拆分问题,标上序号,先干什么在干什么 实 ...
- pythion的定义函数和传递实参
1.定义函数 例子: def greet_user(): """显示简单的问候语""" print("Hello!")g ...
- MicroService
- keras 保存训练的最佳模型
转自:https://anifacc.github.io/deeplearning/machinelearning/python/2017/08/30/dlwp-ch14-keep-best-mode ...