LightGBM的算法介绍
LightGBM算法的特别之处
LightGBM算法在模型的训练速度和内存方面都有相应的优化。
基于树模型的boosting算法,很多算法比如(xgboost 的默认设置)都是用预排序(pre-sorting)算法进行特征的选择和分裂。
- 首先,对所有特征按数值进行预排序。
- 其次,在每次的样本分割时,用O(# data)的代价找到每个特征的最优分割点。
- 最后,找到最后的特征以及分割点,将数据分裂成左右两个子节点。
优缺点:
这种pre-sorting算法能够准确找到分裂点,但是在空间和时间上有很大的开销。
i. 由于需要对特征进行预排序并且需要保存排序后的索引值(为了后续快速的计算分裂点),因此内存需要训练数据的两倍。
ii. 在遍历每一个分割点的时候,都需要进行分裂增益的计算,消耗的代价大。
LightGBM采用Histogram算法,其思想是将连续的浮点特征离散成k个离散值,并构造宽度为k的Histogram。然后遍历训练数据,统计每个离散值在直方图中的累计统计量。在进行特征选择时,只需要根据直方图的离散值,遍历寻找最优的分割点。
Histogram 算法的优缺点:
- Histogram算法并不是完美的。由于特征被离散化后,找到的并不是很精确的分割点,所以会对结果产生影响。但在实际的数据集上表明,离散化的分裂点对最终的精度影响并不大,甚至会好一些。原因在于decision tree本身就是一个弱学习器,采用Histogram算法会起到正则化的效果,有效地防止模型的过拟合。
- 时间上的开销由原来的O(#data * #features)降到O(k * #features)。由于离散化,#bin远小于#data,因此时间上有很大的提升。
- Histogram算法还可以进一步加速。一个叶子节点的Histogram可以直接由父节点的Histogram和兄弟节点的Histogram做差得到。一般情况下,构造Histogram需要遍历该叶子上的所有数据,通过该方法,只需要遍历Histogram的k个捅。速度提升了一倍。
LightGBM的leaf-wise的生长策略
它摒弃了现在大部分GBDT使用的按层生长(level-wise)的决策树生长策略,使用带有深度限制的按叶子生长(leaf-wise)的策略。level-wise过一次数据可以同时分裂同一层的叶子,容易进行多线程优化,也好控制模型复杂度,不容易过拟合。但实际上level-wise是一种低效的算法,因为它不加区分的对待同一层的叶子,带来了很多没必要的开销,因为实际上很多叶子的分裂增益较低,没必要进行搜索和分裂。
Leaf-wise则是一种更为高效的策略,每次从当前所有叶子中,找到分裂增益最大的一个叶子,然后分裂,如此循环。因此同Level-wise相比,在分裂次数相同的情况下,Leaf-wise可以降低更多的误差,得到更好的精度。Leaf-wise的缺点是可能会长出比较深的决策树,产生过拟合。因此LightGBM在Leaf-wise之上增加了一个最大深度的限制,在保证高效率的同时防止过拟合。
LightGBM支持类别特征
实际上大多数机器学习工具都无法直接支持类别特征,一般需要把类别特征,转化one-hotting特征,降低了空间和时间的效率。而类别特征的使用是在实践中很常用的。基于这个考虑,LightGBM优化了对类别特征的支持,可以直接输入类别特征,不需要额外的0/1展开。并在决策树算法上增加了类别特征的决策规则。
以上是LightGBM算法的特别之处,除此之外LightGBM还具有高校并行的特点。下一篇文章将介绍LightGBM的特征并行(Feature Parallel)和数据并行(Data Parallel),以及相较于传统的并行方法的优点。
LightGBM的算法介绍的更多相关文章
- 【原创】机器学习之PageRank算法应用与C#实现(1)算法介绍
考虑到知识的复杂性,连续性,将本算法及应用分为3篇文章,请关注,将在本月逐步发表. 1.机器学习之PageRank算法应用与C#实现(1)算法介绍 2.机器学习之PageRank算法应用与C#实现(2 ...
- KNN算法介绍
KNN算法全名为k-Nearest Neighbor,就是K最近邻的意思. 算法描述 KNN是一种分类算法,其基本思想是采用测量不同特征值之间的距离方法进行分类. 算法过程如下: 1.准备样本数据集( ...
- ISP基本框架及算法介绍
什么是ISP,他的工作原理是怎样的? ISP是Image Signal Processor的缩写,全称是影像处理器.在相机成像的整个环节中,它负责接收感光元件(Sensor)的原始信号数据,可以理解为 ...
- Python之常见算法介绍
一.算法介绍 1. 算法是什么 算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输 ...
- RETE算法介绍
RETE算法介绍一. rete概述Rete算法是一种前向规则快速匹配算法,其匹配速度与规则数目无关.Rete是拉丁文,对应英文是net,也就是网络.Rete算法通过形成一个rete网络进行模式匹配,利 ...
- H2O中的随机森林算法介绍及其项目实战(python实现)
H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator ...
- STL 算法介绍
STL 算法介绍 算法概述 算法部分主要由头文件<algorithm>,<numeric>和<functional>组成. <algorithm ...
- Levenshtein字符串距离算法介绍
Levenshtein字符串距离算法介绍 文/开发部 Dimmacro KMP完全匹配算法和 Levenshtein相似度匹配算法是模糊查找匹配字符串中最经典的算法,配合近期技术栏目关于算法的探讨,上 ...
- 机器学习概念之特征选择(Feature selection)之RFormula算法介绍
不多说,直接上干货! RFormula算法介绍: RFormula通过R模型公式来选择列.支持R操作中的部分操作,包括‘~’, ‘.’, ‘:’, ‘+’以及‘-‘,基本操作如下: 1. ~分隔目标和 ...
随机推荐
- 发布Android程序
这个选项的意思是说,要使用.NET 2.0的完整版本,而非其子集. 下午发布Apk,一直报错,解决好了,忘记选这个了,以前都记得,明天再去公司发布去
- C++/C 内存大小
#include <stdio.h> struct test1{ char a1; int a2; double a3;}; struct test2{ char ...
- 学习MySql和MongoDB笔记
首先了解下关系型数据库和非关系型数据库 关系型数据库 SQL关系型数据库采用了关系模式来组织数据,即关系模式为二维表格模型. 主要的数据库:SQL Server,Oracle,Mysql,Postgr ...
- css的基础用法(上)
css定义: CSS层叠式样表(Cascading Style Sheets)是一种用来表现html或xml等文件样式的计算机语言.CSS不仅可以静态的修饰网页,还可以配合各种脚本语言动态地对网页个 ...
- docker官方文档翻译4
转载请标明出处: https://blog.csdn.net/forezp/article/details/80186178 本文出自方志朋的博客 第四篇:Swarms 准备工作 安装Docker版本 ...
- 关于alert后,才能继续执行后续代码问题
如果在正常情况下,代码要在alert之后才执行,解决办法:将要执行的代码用setTimeout延迟执行即可(原因:页面未加载完毕) 首先,先说明问题情况: 如下JS代码,不能正常执行,只有在最前面加上 ...
- 嗨翻C语言笔记(二)
~a a中所有位都取反 a & b a中的位 与 b中的位 (都为1则1,否则为0) a | b a中的位 或 b中的位 (只要对应位一个位1则为1) a ^ b a中的位 亦或 b中的位 & ...
- jQuery Ajax请求后台数据并在前台接收
1.ajax基本语法 <script> $(function(){ $('#sub').click(function(){ var username=$('#username').val( ...
- php 微信客服信息推送失败 微信重复推送客服消息 40001 45047
/*** * 微信客服发送信息 * 微信客服信息推送失败 微信重复推送客服消息 40001 45047 * 递归提交到微信 直到提交成功 * @param $openid * @param int $ ...
- WinForm webbrowser控件的使用
webbrowser是一个比较实用的工具,主要用于在winform窗体中嵌入浏览器,达到winform与webform互操作的目的. 先上一个demo,看一下能实现什么效果. private void ...