【模板】素数测试(Miller-Rabin测试)
基础素数测试模板
对于大数的素性判断,目前Miller-Rabin算法应用最广泛。一般底数仍然是随机选取,但当待测数不太大时,选择测试底数就有一些技巧了。比如,如果 被测数小于4759123141,那么只需要测试三个底数 a[]={2,7,61} 就足够了。当然,测试的越多,正确的范围也越大。如果你每次都用前7个素数 a[]={2,3,5,7,11,13,17} 进行测试,所有不超过341550071728320的数都是正确的。如果选用 a[]={2,3,7,61,24251} 作为底数,那么10^16内唯一的强伪素数为46856248255981。这样的一些结论使得Miller-Rabin算法在OI中非常实用。通常认为,Miller-Rabin素性测试的正确率可以令人接受,随机选取k个底数进行测试算法的失误率大概为4^(-k)。
tip:1无法进行判断,只能自行特判为false!
#include<iostream>
using namespace std ;
typedef long long ll;
ll pow_mod(ll a,ll b,ll r)
{
ll ans=,buff=a;
while(b)
{
if(b&)
ans=(ans*buff)%r;
buff=(buff*buff)%r;
b>>=;
}
return ans;
} bool test(ll n,ll a,ll d)
{
if(n==)return true;
if(n==a)return false;
if(!(n&))return false;
while(!(d&))d>>=;
ll t=pow_mod(a,d,n);
while(d!=n-&&t!=n-&&t!=)
{
t=t*t%n;
d<<=;
}
return t==n-||(d&)==;//要么t能变成n-1,要么一开始就t=1
} bool isprime(ll n)
{
int a[]={,,,}; //看情况取值
for(int i=;i<=;i++)
{
if(n==a[i])return true;
if(!test(n,a[i],n-))return false;
}
return true;
}
int main()
{
int t;
ll n;
for(cin>>t;t;t--)
{
cin>>n;
cout<<((isprime(n))?"Yes":"No")<<endl;
}
return ;
}
ps:注意上述算法中的幂运算是longlong类型,longlong×longlong肯定会出现溢出现象,如果不会java大整数,手里也没有大整数乘法模板的话,有一个小技巧可以避免溢出,方法就是乘法改为加法,把上面的代码:
ll pow_mod(ll a,ll b,ll r)
{
ll ans=,buff=a;
while(b)
{
if(b&)
ans=(ans*buff)%r;
buff=(buff*buff)%r;
b>>=;
}
return ans;
}
改为:
ll mod_mul(ll a,ll b,ll n)
{
ll res=;
while(b)
{
if(b&)
res=(res+a)%n;
a=(a+a)%n;
b>>=;
}
return res;
} ll pow_mod(ll a,ll b,ll n)
{
ll res=;
while(b)
{
if(b&)
res=mod_mul(res,a,n);
a=mod_mul(a,a,n);
b>>=;
}
return res;
}
【模板】素数测试(Miller-Rabin测试)的更多相关文章
- 与数论的厮守01:素数的测试——Miller Rabin
看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...
- 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...
- Miller Rabin算法详解
何为Miller Rabin算法 首先看一下度娘的解释(如果你懒得读直接跳过就可以反正也没啥乱用:joy:) Miller-Rabin算法是目前主流的基于概率的素数测试算法,在构建密码安全体系中占有重 ...
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- Miller Rabin 大素数测试
PS:本人第一次写随笔,写的不好请见谅. 接触MillerRabin算法大概是一年前,看到这个算法首先得为它的神奇之处大为赞叹,竟然可以通过几次随机数据的猜测就能判断出这数是否是素数,虽然说是有误差率 ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- 【数论基础】素数判定和Miller Rabin算法
判断正整数p是否是素数 方法一 朴素的判定
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- OpenGL-----深度测试,剪裁测试、Alpha测试和模板测试
片断测试其实就是测试每一个像素,只有通过测试的像素才会被绘制,没有通过测试的像素则不进行绘制.OpenGL提供了多种测试操作,利用这些操作可以实现一些特殊的效果.我们在前面的课程中,曾经提到了“深度测 ...
- POJ2429_GCD & LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...
随机推荐
- python学习(七)--豆瓣爬取电影名,评分以及演员
import requestsimport re #爬取豆瓣电影排名pageNum = int(input("要查看第几页电影分数:"))#已知豆瓣默认每页展示20条#url= & ...
- springboot vue组件写的个人博客系统
个人写的博客管理系统,学习java不到一年 欢迎探讨交流学习 https://github.com/Arsense/ssmBlog 项目地址 如果觉得好的 帮忙star一下 谢谢! 基本技术 环境: ...
- unity3D使用C#遍历场景内所有元素进行操作
最近入门Unity3D,跟着教程做完了survival射击游戏,就想加一个功能,就是按一个按钮屏幕上的怪物都清空. 如图右下角所示. 我的方法是赋予所有怪物一个标签Tag,然后根据标签销毁Gameob ...
- JavaScript(Two)
innerHtml xx.innerHtml 读取元素内的所有Html内容 xx.innerHtml = 新的值 替换元素内的所有Html内容 JS中不予许出现"-"; font- ...
- 2017年Nature文章“Millions of online book co-purchases reveal partisan differences in the consumption of science”阅读笔记
论文: Millions of online book co-purchases reveal partisan differences in the consumption of scie ...
- windows常用命令集锦
开始→运行→输入的命令集锦 gpedit.msc-----组策略 sndrec32-------录音机 Nslookup-------IP地址侦测器 explorer-------打开资源管理器 lo ...
- Matlab GUI保存图片
% --- Executes on button press in pushbutton5. function pushbutton5_Callback(hObject, eventdata, han ...
- 使用Unicode写文本文件:一个简单类的示例
参考了http://forums.codeguru.com/showthread.php?457106-Unicode-text-file示例. class WOFSTREAM : public st ...
- JDBC操作数据库的基本步骤:
JDBC操作数据库的基本步骤: 1)加载(注册)数据库驱动(到JVM). 2)建立(获取)数据库连接. 3)创建(获取)数据库操作对象. 4)定义操作的SQL语句. 5)执行数据库操作. 6)获取并操 ...
- 1.appium介绍
appium介绍 官方网站 1.特点 appium 是一个自动化测试开源工具,支持 iOS 平台和 Android 平台上的原生应用,web应用和混合应用. “移动原生应用”是指那些用iOS或者 An ...