Chinese Rings

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 896    Accepted Submission(s): 520

Problem Description
Dumbear likes to play the Chinese Rings (Baguenaudier). It’s a game played with nine rings on a bar. The rules of this game are very simple: At first, the nine rings are all on the bar.
The first ring can be taken off or taken on with one step.
If the first k rings are all off and the (k + 1)th ring is on, then the (k + 2)th ring can be taken off or taken on with one step. (0 ≤ k ≤ 7)

Now consider a game with N (N ≤ 1,000,000,000) rings on a bar, Dumbear wants to make all the rings off the bar with least steps. But Dumbear is very dumb, so he wants you to help him.

 
Input
Each line of the input file contains a number N indicates the number of the rings on the bar. The last line of the input file contains a number "0".
 
Output
For each line, output an integer S indicates the least steps. For the integers may be very large, output S mod 200907.
 
Sample Input
1
4
0
 
Sample Output
1
10
 
Source
题意:
棍上有n个环,第一个环可以随时拿下或放上,只有在前k-2个环拿下了,第k-1个环在棍上才能拿下或放上第k个环,问把环全部拿下的最少步数。每拿下一个环或放上一个环用一步。
代码:
 /*
当环多于3个时,必然要先拿走最后一个,要想拿走最后一个就要先拿走前n-2个也就是需要f(n-2)步,然后才能
拿走最后一个,然后再把前n-2个加上又是f(n-2)步,才能继续拿,然后就是要算拿走n-1个环的步数,因此
递推公式:f(n)=f(n-2)+1+f(n-2)+f(n-1).然后构造矩阵,快速幂. 1 0 0^n-2 * 1
1 1 2 f(n-1)
0 1 0 f(n-2)
*/
#include<iostream>
using namespace std;
const int mod=;
struct Lu
{
long long A[][]; // long long
}L;
void init()
{
L.A[][]=L.A[][]=L.A[][]=L.A[][]=;
L.A[][]=L.A[][]=L.A[][]=L.A[][]=;
L.A[][]=;
}
Lu multi(Lu x,Lu y)
{
Lu z;
for(int i=;i<;i++)
for(int j=;j<;j++){
z.A[i][j]=;
for(int k=;k<;k++){
z.A[i][j]+=x.A[i][k]*y.A[k][j];
z.A[i][j]%=mod;
}
}
return z;
}
Lu solve(int x)
{
if(x==) return L;
if(x&){
Lu p=solve(x-);
return multi(p,L);
}
else {
Lu p=solve(x/);
return multi(p,p);
}
}
int main()
{
int n;
while(cin>>n&&n){
if(n==){
cout<<<<endl;
continue;
}
else if(n==){
cout<<<<endl;
continue;
}
init();
L=solve(n-);
int ans=(L.A[][]*)%mod+(L.A[][]*)%mod+(L.A[][]*)%mod;
cout<<ans%mod<<endl;
}
return ;
}

HDU2842 矩阵乘法的更多相关文章

  1. *HDU2254 矩阵乘法

    奥运 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submissi ...

  2. *HDU 1757 矩阵乘法

    A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  3. CH Round #30 摆花[矩阵乘法]

    摆花 CH Round #30 - 清明欢乐赛 背景及描述 艺术馆门前将摆出许多花,一共有n个位置排成一排,每个位置可以摆花也可以不摆花.有些花如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看 ...

  4. POJ3070 Fibonacci[矩阵乘法]

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13677   Accepted: 9697 Descri ...

  5. bzoj 2738 矩阵乘法

    其实这题跟矩阵乘法没有任何卵关系,直接整体二分,用二维树状数组维护(刚刚学会>_<),复杂度好像有点爆炸(好像有十几亿不知道是不是算错了),但我们不能怂啊23333. #include&l ...

  6. 【BZOJ-2476】战场的数目 矩阵乘法 + 递推

    2476: 战场的数目 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 58  Solved: 38[Submit][Status][Discuss] D ...

  7. 【BZOJ-1898】Swamp 沼泽鳄鱼 矩阵乘法

    1898: [Zjoi2005]Swamp 沼泽鳄鱼 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1012  Solved: 566[Submit][S ...

  8. 【Codeforces718C】Sasha and Array 线段树 + 矩阵乘法

    C. Sasha and Array time limit per test:5 seconds memory limit per test:256 megabytes input:standard ...

  9. 矩阵乘法的MapReduce实现

    对于任意矩阵M和N,若矩阵M的列数等于矩阵N的行数,则记M和N的乘积为P=M*N,其中mik 记做矩阵M的第i行和第k列,nkj记做矩阵N的第k行和第j列,则矩阵P中,第i行第j列的元素可表示为公式( ...

随机推荐

  1. 关于so文件cp覆盖导致调用者core的研究

    先说cp好mv/rm的区别: cp from to,则被覆盖文件 to的inode依旧不变(属性也不变),内容变为from的: mv from to,则to的inode变为from的,相应的,to的属 ...

  2. VC++ : error LNK2001: unresolved external symbol "__declspec(dllimport) public: __thiscall std::basic_string<wchar_t,struct std::char_traits<wchar_t>

    最近学习Google Breakpad,将其用在了自己的项目中,编译的版本为VS2010,没有什么问题.但是为了和之前的程序兼容,需要使用VS2008版本的程序,于是又编译了VS2008版本的代码,但 ...

  3. dom操作导致超级卡顿。。。

    var i=0;j=30;setinterval(function(){ document.getElementId(idname).style.top=j+'px'; i<3?i++:i=0; ...

  4. C语言、结构体 定义

    C语言允许用户自己建立由 不同类型数据组成的组合型数据结构 成为结构体. struct Student { int num; //学号 ]; //姓名为字符串 char sex; //性别为字符型 i ...

  5. iOS 导出 ipa 包时 四个选项的意义

    iOS 导出 ipa 包时 四个选项的意义 如图  在 iOS 到处 ipa包的时候 会有四个选项 1.Save for iOS App Store Deployment 保存到本地 准备上传App ...

  6. 【NodeJS】环境变量配置

    安装完Node后,NodeJS自带npm.于是我照着网上的教程想搭一个脚手架.结果报错: ’node’ 不是内部或外部命令,也不是可运行的程序 但是我检查了一下系统环境变量,path底下有正确引用no ...

  7. 在Linux下配置多线路ADSL的方法

    经过一段时间的观察,证明运行良好,现把设置过程及方法总结一下,欢迎指正.此文档可以说明双ADSL及多ADSL增加线路的配置过程. 实验环境: 操作系统: RedHat7.3 两条ADSL,长期观察线路 ...

  8. rman恢复报ORA-27039

    查看资源限制: AIX修改参数文件/etc/security/limits 如下: 重新su到用户下即可生效

  9. 本人为巨杉数据库(开源NoSQL)写的C#驱动,支持Linq,全部开源,已提交github

    一.关于NoSQL的项目需求 这些年在做AgileEAS.NET SOA 中间件平台的推广.技术咨询服务过程之中,特别是针对我们最熟悉的医疗行业应用之中,针对大数据分析,大并发性能的需求,我们也在慢慢 ...

  10. EF中扩展出Between操作符 (修订版)

    随手记录一下,这是针对原文错误的修改. 原文:EF中扩展出Between操作符 直接使用是错误的,修改后的扩展方法: /// <summary> /// 扩展 Between 操作符 // ...