输入子系统--event层分析【转】
早前曾研究了一下输入子系统的原理,给人的感觉是输入子系统很复杂.但其实内核开发者在这方面已经做得很完善了,
输入子系统虽然错综复杂,但是只要我们领会了输入子系统的一些设计思想后,我们要使用它并非难事.
以下以内核自带的gpio_keys驱动为例,介绍输入子系统的使用.
主要的原因是gpio_keys驱动比较简单易懂,另外不是没个人都有触摸屏,但键盘的话相信每一块开发板上都配有吧^_^
按照以前的习惯,先从下到上的研究底层驱动是如何提交输入事件的:
#####################################################################################################
drivers/input/keyboard/gpio_keys.c:
static int __devinit gpio_keys_probe(struct platform_device *pdev)
{
struct gpio_keys_platform_data *pdata = pdev->dev.platform_data;
struct input_dev *input;
int i, error;
input = input_allocate_device();//申请input_dev结构
if (!input)
return -ENOMEM;
platform_set_drvdata(pdev, input);//把input_dev结构放好(以后方便调用)
input->evbit[0] = BIT(EV_KEY);//目前event的类型不操作32,所以你会看到对于evbit数组的操作都是对evbit[0]中的位来进行操作.
input->name = pdev->name;
input->phys = "gpio-keys/input0";
input->dev.parent = &pdev->dev;
input->id.bustype = BUS_HOST;
input->id.vendor = 0x0001;
input->id.product = 0x0001;
input->id.version = 0x0100;
for (i = 0; i < pdata->nbuttons; i++) {
struct gpio_keys_button *button = &pdata->buttons[i];
int irq = gpio_to_irq(button->gpio);
unsigned int type = button->type ?: EV_KEY;
set_irq_type(irq, IRQ_TYPE_EDGE_BOTH);
/* 根据用户所指定的gpio_keys来申请中断和注册中断处理函数*/
error = request_irq(irq, gpio_keys_isr, IRQF_SAMPLE_RANDOM,
button->desc ? button->desc : "gpio_keys",
pdev);
if (error) {
printk(KERN_ERR "gpio-keys: unable to claim irq %d; error %d/n",
irq, error);
goto fail;
}
input_set_capability(input, type, button->code);
}
error = input_register_device(input);//注册输入设备,并和对应的handler处理函数挂钩
if (error) {
printk(KERN_ERR "Unable to register gpio-keys input device/n");
goto fail;
}
return 0;
fail:
for (i = i - 1; i >= 0; i--)
free_irq(gpio_to_irq(pdata->buttons[i].gpio), pdev);
input_free_device(input);
return error;
}
提到input_dev结构,以下谈一下我对于它的理解:
struct input_dev {
void *private;
const char *name;
const char *phys;
const char *uniq;
struct input_id id;
/*
* 根据各种输入信号的类型来建立类型为unsigned long 的数组,
* 数组的每1bit代表一种信号类型,
* 内核中会对其进行置位或清位操作来表示时间的发生和被处理.
*/
unsigned long evbit[NBITS(EV_MAX)];
unsigned long keybit[NBITS(KEY_MAX)];
unsigned long relbit[NBITS(REL_MAX)];
unsigned long absbit[NBITS(ABS_MAX)];
unsigned long mscbit[NBITS(MSC_MAX)];
unsigned long ledbit[NBITS(LED_MAX)];
unsigned long sndbit[NBITS(SND_MAX)];
unsigned long ffbit[NBITS(FF_MAX)];
unsigned long swbit[NBITS(SW_MAX)];
.........................................
};
/**
* input_set_capability - mark device as capable of a certain event
* @dev: device that is capable of emitting or accepting event
* @type: type of the event (EV_KEY, EV_REL, etc...)
* @code: event code
*
* In addition to setting up corresponding bit in appropriate capability
* bitmap the function also adjusts dev->evbit.
*/
/* 记录本设备对于哪些事件感兴趣(对其进行处理)*/
void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
{
switch (type) {
case EV_KEY:
__set_bit(code, dev->keybit);//比如按键,应该对哪些键值的按键进行处理(对于其它按键不予理睬)
break;
case EV_REL:
__set_bit(code, dev->relbit);
break;
case EV_ABS:
__set_bit(code, dev->absbit);
break;
case EV_MSC:
__set_bit(code, dev->mscbit);
break;
case EV_SW:
__set_bit(code, dev->swbit);
break;
case EV_LED:
__set_bit(code, dev->ledbit);
break;
case EV_SND:
__set_bit(code, dev->sndbit);
break;
case EV_FF:
__set_bit(code, dev->ffbit);
break;
default:
printk(KERN_ERR
"input_set_capability: unknown type %u (code %u)/n",
type, code);
dump_stack();
return;
}
__set_bit(type, dev->evbit);//感觉和前面重复了(前面一经配置过一次了)
}
EXPORT_SYMBOL(input_set_capability);
static irqreturn_t gpio_keys_isr(int irq, void *dev_id)
{
int i;
struct platform_device *pdev = dev_id;
struct gpio_keys_platform_data *pdata = pdev->dev.platform_data;
struct input_dev *input = platform_get_drvdata(pdev);
for (i = 0; i < pdata->nbuttons; i++) {
struct gpio_keys_button *button = &pdata->buttons[i];
int gpio = button->gpio;
if (irq == gpio_to_irq(gpio)) {//判断哪个键被按了?
unsigned int type = button->type ?: EV_KEY;
int state = (gpio_get_value(gpio) ? 1 : 0) ^ button->active_low;//记录按键状态
input_event(input, type, button->code, !!state);//汇报输入事件
input_sync(input);//等待输入事件处理完成
}
}
return IRQ_HANDLED;
}
/*
* input_event() - report new input event
* @dev: device that generated the event
* @type: type of the event
* @code: event code
* @value: value of the event
*
* This function should be used by drivers implementing various input devices
* See also input_inject_event()
*/
void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)
{
struct input_handle *handle;
if (type > EV_MAX || !test_bit(type, dev->evbit))//首先判断该事件类型是否有效且为该设备所接受
return;
add_input_randomness(type, code, value);
switch (type) {
case EV_SYN:
switch (code) {
case SYN_CONFIG:
if (dev->event)
dev->event(dev, type, code, value);
break;
case SYN_REPORT:
if (dev->sync)
return;
dev->sync = 1;
break;
}
break;
case EV_KEY:
/*
* 这里需要满足几个条件:
* 1: 键值有效(不超出定义的键值的有效范围)
* 2: 键值为设备所能接受(属于该设备所拥有的键值范围)
* 3: 按键状态改变了
*/
if (code > KEY_MAX || !test_bit(code, dev->keybit) || !!test_bit(code, dev->key) == value)
return;
if (value == 2)
break;
change_bit(code, dev->key);//改变对应按键的状态
/* 如果你希望按键未释放的时候不断汇报按键事件的话需要以下这个(在简单的gpio_keys驱动中不需要这个,暂时不去分析) */
if (test_bit(EV_REP, dev->evbit) && dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && dev->timer.data && value) {
dev->repeat_key = code;
mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
}
break;
........................................................
if (type != EV_SYN)
dev->sync = 0;
if (dev->grab)
dev->grab->handler->event(dev->grab, type, code, value);
else
/*
* 循环调用所有处理该设备的handle(event,mouse,ts,joy等),
* 如果有进程打开了这些handle(进行读写),则调用其对应的event接口向气汇报该输入事件.
*/
list_for_each_entry(handle, &dev->h_list, d_node)
if (handle->open)
handle->handler->event(handle, type, code, value);
}
EXPORT_SYMBOL(input_event);
#########################################################################
好了,下面再来研究一下event层对于input层报告的这个键盘输入事件是如何来处理的.
#########################################################################
drivers/input/evdev.c:
static struct input_handler evdev_handler = {
.event = evdev_event,
.connect = evdev_connect,
.disconnect = evdev_disconnect,
.fops = &evdev_fops,
.minor = EVDEV_MINOR_BASE,
.name = "evdev",
.id_table = evdev_ids,
};
static void evdev_event(struct input_handle *handle, unsigned int type, unsigned int code, int value)
{
struct evdev *evdev = handle->private;
struct evdev_client *client;
if (evdev->grab) {
client = evdev->grab;
do_gettimeofday(&client->buffer[client->head].time);
client->buffer[client->head].type = type;
client->buffer[client->head].code = code;
client->buffer[client->head].value = value;
client->head = (client->head + 1) & (EVDEV_BUFFER_SIZE - 1);
kill_fasync(&client->fasync, SIGIO, POLL_IN);
} else
/* 遍厉client_list链表中的client结构(代表些打开evdev的进程(个人理解^_^)) */
list_for_each_entry(client, &evdev->client_list, node) {
/* 填充代表该输入信号的struct input_event结构(事件,类型,键码,键值) */
do_gettimeofday(&client->buffer[client->head].time);
client->buffer[client->head].type = type;
client->buffer[client->head].code = code;
client->buffer[client->head].value = value;
/* 更新写指针 */
client->head = (client->head + 1) & (EVDEV_BUFFER_SIZE - 1);
kill_fasync(&client->fasync, SIGIO, POLL_IN);//通知调用input_sync的进程:输入事件经已处理完毕(通知底层).
}
wake_up_interruptible(&evdev->wait);//唤醒睡眠在evdev->wait等待队列等待输入信息的进程(通知上层).
}
###################################################################################
好了,至此一个按键的输入事件处理完毕,现在再来从上到上的来看看用户是如何获取这个输入事件的.
###################################################################################
static const struct file_operations evdev_fops = {
.owner = THIS_MODULE,
.read = evdev_read,
.write = evdev_write,
.poll = evdev_poll,
.open = evdev_open,
.release = evdev_release,
.unlocked_ioctl = evdev_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = evdev_ioctl_compat,
#endif
.fasync = evdev_fasync,
.flush = evdev_flush
};
static int evdev_open(struct inode *inode, struct file *file)
{
struct evdev_client *client;
struct evdev *evdev;
int i = iminor(inode) - EVDEV_MINOR_BASE;
int error;
if (i >= EVDEV_MINORS)
return -ENODEV;
evdev = evdev_table[i];
if (!evdev || !evdev->exist)
return -ENODEV;
client = kzalloc(sizeof(struct evdev_client), GFP_KERNEL);
if (!client)
return -ENOMEM;
client->evdev = evdev;
/* 添加evdev_client结构到链表evdev->client_list中(好让输入事件到来的时候填写该结构并唤醒进程读取) */
list_add_tail(&client->node, &evdev->client_list);
if (!evdev->open++ && evdev->exist) {
error = input_open_device(&evdev->handle);
if (error) {
list_del(&client->node);
kfree(client);
return error;
}
}
file->private_data = client;//存放好evdev_client结构方便以后使用
return 0;
}
static ssize_t evdev_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct evdev_client *client = file->private_data;
struct evdev *evdev = client->evdev;
int retval;
if (count < evdev_event_size())//对于每次读取的数据大小是有一定的要求.
return -EINVAL;
if (client->head == client->tail && evdev->exist && (file->f_flags & O_NONBLOCK))//缓存中没有数据可读且设备是存在的,
如果设置为NONBLOCK方式来读,立即返回.
return -EAGAIN;
retval = wait_event_interruptible(evdev->wait,
client->head != client->tail || !evdev->exist);//否则等待缓存有数据可读或设备不存在(被移去)
if (retval)
return retval;
if (!evdev->exist)
return -ENODEV;
while (client->head != client->tail && retval + evdev_event_size() <= count) {//下面开始读取数据
struct input_event *event = (struct input_event *) client->buffer + client->tail;//获取缓存中的读指针
if (evdev_event_to_user(buffer + retval, event))//返回数据给用户
return -EFAULT;
client->tail = (client->tail + 1) & (EVDEV_BUFFER_SIZE - 1);//更新读指针
retval += evdev_event_size();
}
return retval;
}
呵呵,看到了吧,应用程序就是这样获取输入事件的^_^
######################################################################################################################################
本来对于gpio_keys这样的驱动程序,只要当发生按键事件的时候向上层应用程序汇报键值即可.
不过,对于一些带输出设备(例如led灯)的输入设备来说(例如键盘),上层应用程序同样可以利用event层来读取或改变其状态.
请看以下代码:
######################################################################################################################################
static ssize_t evdev_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
struct evdev_client *client = file->private_data;
struct evdev *evdev = client->evdev;
struct input_event event;
int retval = 0;
if (!evdev->exist)
return -ENODEV;
while (retval < count) {
if (evdev_event_from_user(buffer + retval, &event))//从用户处获取事件结构
return -EFAULT;
input_inject_event(&evdev->handle, event.type, event.code, event.value);//往底层发送事件
retval += evdev_event_size();
}
return retval;
}
/**
* input_inject_event() - send input event from input handler
* @handle: input handle to send event through
* @type: type of the event
* @code: event code
* @value: value of the event
*
* Similar to input_event() but will ignore event if device is "grabbed" and handle
* injecting event is not the one that owns the device.
*/
void input_inject_event(struct input_handle *handle, unsigned int type, unsigned int code, int value)
{
if (!handle->dev->grab || handle->dev->grab == handle)
input_event(handle->dev, type, code, value);
}
EXPORT_SYMBOL(input_inject_event);
/*
* input_event() - report new input event
* @dev: device that generated the event
* @type: type of the event
* @code: event code
* @value: value of the event
*
* This function should be used by drivers implementing various input devices
* See also input_inject_event()
*/
void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)
{
struct input_handle *handle;
if (type > EV_MAX || !test_bit(type, dev->evbit))//首先判断该事件类型是否有效且为该设备所接受
return;
add_input_randomness(type, code, value);
switch (type) {
case EV_SYN:
switch (code) {
case SYN_CONFIG:
if (dev->event)
dev->event(dev, type, code, value);
break;
case SYN_REPORT:
if (dev->sync)
return;
dev->sync = 1;
break;
}
break;
.............................................................
case EV_LED:
if (code > LED_MAX || !test_bit(code, dev->ledbit) || !!test_bit(code, dev->led) == value)
return;
change_bit(code, dev->led);
if (dev->event)
dev->event(dev, type, code, value);
break;
if (type != EV_SYN)
dev->sync = 0;
if (dev->grab)
dev->grab->handler->event(dev->grab, type, code, value);
else
/*
* 循环调用所有处理该设备的handle(event,mouse,ts,joy等),
* 如果有进程打开了这些handle(进行读写),则调用其对应的event接口向气汇报该输入事件.
*/
list_for_each_entry(handle, &dev->h_list, d_node)
if (handle->open)
handle->handler->event(handle, type, code, value);
}
EXPORT_SYMBOL(input_event);
注:
鉴于简单的gpio_keys驱动中没有注册自己的event接口,当然也没有对于LED灯的处理,而event层只是简单的向上层汇报输入事件(event层也不可能帮你处理你的led设备,对吧),所以这个通过输入子系统控制LED的部分暂时不去研究.
(输出设备LED灯不属于这个输入设备gpio_key的一部分.当然,如果你想通过这个gpio_keys设备来控制led灯的话,可以修改这个gpio_keys驱动,详细可参考driver/input/keyboard目录下的驱动)
来源:http://blog.csdn.net/linweig/article/details/5330388
输入子系统--event层分析【转】的更多相关文章
- Android中基于CGroup的memory子系统HAL层分析-lmkd
Android在内存管理上于Linux有些小的区别,其中一个就是引入了lowmemorykiller.从lowmemorykiller.c位于drivers/staging/android也可知道,属 ...
- 7.Linux 输入子系统分析
为什么要引入输入子系统? 在前面我们写了一些简单的字符设备的驱动程序,我们是怎么样打开一个设备并操作的呢? 一般都是在执行应用程序时,open一个特定的设备文件,如:/dev/buttons .... ...
- i.mx android6 输入子系统分析(未完)
参考:http://blog.csdn.net/u010312937/article/details/53285286 https://www.jianshu.com/p/7fca94b330ea ...
- Linux输入子系统详解
input输入子系统框架 linux输入子系统(linux input subsystem)从上到下由三层实现,分别为:输入子系统事件处理层(EventHandler).输入子系统核心层(Input ...
- linux输入子系统
linux输入子系统(linux input subsystem)从上到下由三层实现,分别为:输入子系统事件处理层(EventHandler).输入子系统核心层(InputCore)和输入子系统设备驱 ...
- linux 输入子系统之电阻式触摸屏驱动
一.输入子系统情景回忆ING...... 在Linux中,输入子系统是由输入子系统设备驱动层.输入子系统核心层(Input Core)和输入子系统事件处理层(Event Handler)组成.其中设备 ...
- linux输入子系统简述【转】
本文转载自:http://blog.csdn.net/xubin341719/article/details/7678035 1,linux输入子系统简述 其实驱动这部分大多还是转载别人的,linux ...
- Linux输入子系统(转)
Linux输入子系统(Input Subsystem) 1.1.input子系统概述 输入设备(如按键,键盘,触摸屏,鼠标等)是典型的字符设备,其一般的工作机制是低层在按键,触摸等动作发生时产生一个中 ...
- ARM Linux内核Input输入子系统浅解
--以触摸屏驱动为例 第一章.了解linux input子系统 Linux输入设备总类繁杂,常见的包括有按键.键盘.触摸屏.鼠标.摇杆等等,他们本身就是字符设备,而linux内核将这些 ...
随机推荐
- (vue01)vue环境搭建
腾讯,百度,网易....这么大媒体平台咋老推送这么lower的信息? 你们不缺钱啊....我这么善良的孩子都别你们带坏了 强烈鄙视马化腾 强烈鄙视李彦宏 参考地址: https://segmentfa ...
- PHP Fatal error: Undefined class constant 'MYSQL_ATTR_INIT_COMMAND'
最近用ThinkPHP,给公司布置线上的网站的时候,遇到的一个问题,记录一下. 打开IE浏览器的设置,Internet选项里的高级,将”显示友好的HTTP错误消息“前都勾去掉! 再次刷新,看到的错误是 ...
- 制作一个简易计算器——基于Android Studio实现
一个计算器Android程序的源码部分分为主干和细节两部分. 一.主干 1. 主干的构成 计算器的布局 事件(即计算器上的按钮.文本框)监听 实现计算 2. 详细解释 假设我们的项目名为Calcula ...
- MySQL初识2
用python调用mysql的一些方法总结: 1.编码声明: # encoding: UTF-8#!/usr/bin/python 在开头处进行声明,避免出现输入中文时,提示声明错误(当然输入中文出现 ...
- Java中Model1和Model2
Model1和Model2是java web的两种架构模式.这两种模式各有优缺点,都有各自适合使用的场景. Model1 首先,从分层的角度说,Model1模式可以看作是由两层组成:视图层和模型层. ...
- capacilitys 持续集成
目前看好像是说以docker为例来看看这个权限到底是怎么来的? 可以通过在二进制上setcap得到,也可以通过函数自己用setcap得到,两种方法,docker肯定是第二种方法啊,docker中间肯定 ...
- express框架 中间件
- mii-tool与ethtool的用法详解
mii-tool与ethtool的用法详解 1.mii-tool 配置网络设备协商方式的工具: 感谢原文作者!原文地址:http://blog.chinaunix.net/uid-20639775-i ...
- [洛谷P3254]圆桌问题
题目大意:有$m$个单位,每个单位有$r_i$个代表,有$n$张餐桌,每张餐桌可容纳$c_i$个代表.要求同一个单位的代表不在同一个餐桌就餐.若可以,输出$1$以及其中一种方案,否则输出$0$ 题解: ...
- 统计无符号整数二进制中1的个数(Hamming weight)
1.问题来源 之所以来记录这个问题的解法,是因为在在线编程中经常遇到,比如编程之美和京东的校招笔试以及很多其他公司都累此不疲的出这个考题.看似简单的问题,背后却隐藏着很多精妙的解法.查找网上资料,才知 ...