GCN模块的实现比较简单,在giuhub上看到两种实现,轻微不同

实现一:https://github.com/ycszen/pytorch-segmentation/blob/master/gcn.py

class GCN(nn.Module):
def __init__(self, inplanes, planes, ks=7):
super(GCN, self).__init__()
self.conv_l1 = nn.Conv2d(inplanes, planes, kernel_size=(ks, 1),
padding=(ks/2, 0)) self.conv_l2 = nn.Conv2d(planes, planes, kernel_size=(1, ks),
padding=(0, ks/2))
self.conv_r1 = nn.Conv2d(inplanes, planes, kernel_size=(1, ks),
padding=(0, ks/2))
self.conv_r2 = nn.Conv2d(planes, planes, kernel_size=(ks, 1),
padding=(ks/2, 0)) def forward(self, x):
x_l = self.conv_l1(x)
x_l = self.conv_l2(x_l) x_r = self.conv_r1(x)
x_r = self.conv_r2(x_r) x = x_l + x_r return x

实现二:https://github.com/ogvalt/large_kernel_matters/blob/master/scripts/model.py

class GCN(nn.Module):
def __init__(self, inchannels, channels=21, k=3):
super(GCN, self).__init__() self.conv_l1 = Conv2D(in_channels=inchannels, out_channels=channels, kernel_size=(k, 1), padding='same')
self.conv_l2 = Conv2D(in_channels=channels, out_channels=channels, kernel_size=(1, k), padding='same') self.conv_r1 = Conv2D(in_channels=inchannels, out_channels=channels, kernel_size=(1, k), padding='same')
self.conv_r2 = Conv2D(in_channels=channels, out_channels=channels, kernel_size=(k, 1), padding='same') def forward(self, x):
x1 = self.conv_l1(x)
x1 = self.conv_l2(x1) x2 = self.conv_r1(x)
x2 = self.conv_r2(x2) out = x1 + x2 return out

两种实现不同之处在padding的方式,一种是设定值,一种是自动的。不过我发现pytorch0.4.0是不支持对padding关键字参数传入字符串的,另外,我自己写了一个3D版的,不知道对否。

class GCN(nn.Module):
def __init__(self, inplanes, planes, ks=7):
super(GCN, self).__init__()
self.conv_l1 = nn.Conv3d(inplanes, planes, kernel_size=(ks, 1, 1),
padding=(ks/2, 0, 0))
self.conv_l2 = nn.Conv3d(planes, planes, kernel_size=(1, ks, 1),
padding=(0, ks/2, 0))
self.conv_l3 = nn.Conv3d(planes, planes, kernel_size=(1, 1, ks),
padding=(0, 0, ks/2)) self.conv_c1 = nn.Conv3d(inplanes, planes, kernel_size=(1, ks, 1),
padding=(0, ks/2, 0))
self.conv_c2 = nn.Conv3d(planes, planes, kernel_size=(1, 1, ks),
padding=(0, 0, ks/2))
self.conv_c3 = nn.Conv3d(planes, planes, kernel_size=(ks, 1, 1),
padding=(ks/2, 0, 0)) self.conv_r1 = nn.Conv3d(inplanes, planes, kernel_size=(1, 1, ks),
padding=(0, 0, ks/2))
self.conv_r2 = nn.Conv3d(planes, planes, kernel_size=(ks, 1, 1),
padding=(ks/2, 0, 0))
self.conv_r3 = nn.Conv3d(planes, planes, kernel_size=(1, ks, 1),
padding=(0, ks/2, 0)) def forward(self, x):
x_l = self.conv_l1(x)
x_l = self.conv_l2(x_l)
x_l = self.conv_l3(x_l) x_c = self.conv_c1(x)
x_c = self.conv_c2(x_c)
x_c = self.conv_c3(x_c) x_r = self.conv_r1(x)
x_r = self.conv_r2(x_r)
x_r = self.conv_r3(x_r)
x = x_l + x_r + x_c return x

  

【语义分割】large kernel matters中GCN模块的pytorch实现的更多相关文章

  1. Large Kernel Matters —— Improve Semantic Segmentation by Global Convolutional Network(GCN全局卷积网络)

    作者认为语义分割的两个挑战是分类和定位,而这两个挑战又是比较对立的.对于分类问题,模型需要有变形和旋转不变形,而对于定位问题,模型有需要对变形敏感. 提出的GCN遵循两个主要原则: 1.对定位问题,模 ...

  2. 【语义分割】PSPNet中PSP模块的pytorch实现

    github地址:https://github.com/Lextal/pspnet-pytorch/blob/master/pspnet.py PSP模块示意图如下 代码如下 class PSPMod ...

  3. 语义分割(semantic segmentation) 常用神经网络介绍对比-FCN SegNet U-net DeconvNet,语义分割,简单来说就是给定一张图片,对图片中的每一个像素点进行分类;目标检测只有两类,目标和非目标,就是在一张图片中找到并用box标注出所有的目标.

    from:https://blog.csdn.net/u012931582/article/details/70314859 2017年04月21日 14:54:10 阅读数:4369 前言 在这里, ...

  4. 利用NVIDIA-NGC中的MATLAB容器加速语义分割

    利用NVIDIA-NGC中的MATLAB容器加速语义分割 Speeding Up Semantic Segmentation Using MATLAB Container from NVIDIA NG ...

  5. 笔记:基于DCNN的图像语义分割综述

    写在前面:一篇魏云超博士的综述论文,完整题目为<基于DCNN的图像语义分割综述>,在这里选择性摘抄和理解,以加深自己印象,同时达到对近年来图像语义分割历史学习和了解的目的,博古才能通今!感 ...

  6. CVPR2020:4D点云语义分割网络(SpSequenceNet)

    CVPR2020:4D点云语义分割网络(SpSequenceNet) SpSequenceNet: Semantic Segmentation Network on 4D Point Clouds 论 ...

  7. 使用LabVIEW实现基于pytorch的DeepLabv3图像语义分割

    前言 今天我们一起来看一下如何使用LabVIEW实现语义分割. 一.什么是语义分割 图像语义分割(semantic segmentation),从字面意思上理解就是让计算机根据图像的语义来进行分割,例 ...

  8. 语义分割Semantic Segmentation研究综述

    语义分割和实例分割概念 语义分割:对图像中的每个像素都划分出对应的类别,实现像素级别的分类. 实例分割:目标是进行像素级别的分类,而且在具体类别的基础上区别不同的实例. 语义分割(Semantic S ...

  9. TensorFlow中的语义分割套件

    TensorFlow中的语义分割套件 描述 该存储库用作语义细分套件.目标是轻松实现,训练和测试新的语义细分模型!完成以下内容: 训练和测试方式 资料扩充 几种最先进的模型.轻松随插即用 能够使用任何 ...

随机推荐

  1. 查看window下默认ORACLE_SID

    Configuration and Migration Tools-----Configuration and Migration Tools-----Administration Assistant ...

  2. 图的第k短路

    [问题描述] 给你一个有向图,求从1到n的第k短路. [解法] SPFA+A*搜索. 1 A*算法 A*算法在人工智能中是一种典型的启发式搜索算法,启发中的估价是用估价函数表示的: h(n)=f(n) ...

  3. php安装memcache

    php扩展memcache的作用是为了支持memcached数据库缓存服务器,下面是安装方法. 1.下载并解压memcache文件 1 2 3 wget -c http://pecl.php.net/ ...

  4. dataTable写入数据库(大数据写入)

    例1: connectionStr,链接字符串dataTableName, 数据库中对应表名sourceDataTable DataTable 要写入数据库的DataTable字段要和表一致 publ ...

  5. 5-有道爬虫demo(post)

    爬取有道页面,实现中文翻译成英文: #_*_ coding: utf-8 _*_ ''' Created on 2018-7-12 @author: sss 功能:爬取有道翻译 ''' import ...

  6. Python 面向对象class(2)

    Python 面向对象 Python从设计之初就已经是一门面向对象的语言,正因为如此,在Python中创建一个类和对象是很容易的.本章节我们将详细介绍Python的面向对象编程. 如果你以前没有接触过 ...

  7. 如何确定tabcontrol哪一页码是活跃页???

    tabControl1.SelectedIndex属性 显示了现在显示的是哪一页码内的控件.

  8. HTML5+CSS3从入门到精通 中文pdf版​

    HTML5+CSS3从入门到精通是通过基础知识+中小实例+综合案例的方式,讲述了用HTML5+ CSS3设计构建网站的必备知识,相对于专业指南.高级程序设计.开发指南同类图书,本书是一本适合快速入手的 ...

  9. Linux 命令之chcon

    chcon命令:修改对象(文件)的安全上下文.比如:用户:角色:类型:安全级别.主要用在selinux中用来更改安全上下文.命令格式: Chcon [OPTIONS…] CONTEXT FILES…. ...

  10. JS判断键盘是否按的回车键并触发指定按钮点击操作

    document.onkeydown = function (e) { if (!e) e = window.event; if ((e.keyCode || e.which) == 13) { va ...