HDU1815 Building roads(二分+2-SAT)
Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns.
That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to.
We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other.
Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|.
Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively.
Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one.
Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other.
The same pair of barns never appears more than once.
Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once.
You should note that all the coordinates are in the range [-1000000, 1000000].
思路是没有问题的,但是写的有点丑,很多地方还可以合并。一开始思路就没有问题的,但是这种题就是找bug很头疼。QwQ!
结果是maxn开了510,忘记了两倍,晕死了。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=;
const int B=;
const int R=;
const int W=;
vector<int>G[maxn];
vector<int>G2[maxn];
int dis[][maxn],Dis;//Dis是S点,T点
int x,y,x1,y1,x2,y2,a,b,n,ans;
int col[maxn],q[maxn],num;
void init()
{
for(int i=;i<=*n;i++) G[i].clear();
for(int i=;i<=*n;i++) G2[i].clear();
ans=-;
}
void scan()
{
int i;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
Dis=abs(x1-x2)+abs(y1-y2);
for(i=;i<=n;i++){
scanf("%d%d",&x,&y);
dis[][i]=abs(x-x1)+abs(y-y1);
dis[][i]=abs(x-x2)+abs(y-y2);
}
for(i=;i<=a;i++){
scanf("%d%d",&x,&y);
G[x].push_back(y+n);
G[x+n].push_back(y);
G[y].push_back(x+n);
G[y+n].push_back(x);
}
for(i=;i<=b;i++){
scanf("%d%d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
G[x+n].push_back(y+n);
G[y+n].push_back(x+n);
} }
bool dfs(int u)
{
if(col[u]==R) return false;
if(col[u]==B) return true;
col[u]=B;
col[u>n?u-n:u+n]=R;
q[++num]=u;
for(int i=;i<G[u].size();i++) if(!dfs(G[u][i])) return false;
for(int i=;i<G2[u].size();i++) if(!dfs(G2[u][i])) return false;
return true;
}
bool check(int x)
{
int i,j;
for(i=;i<=n;i++) if(dis[][i]>x&&dis[][i]>x) return false;
for(i=;i<=*n;i++) G2[i].clear();
for(i=;i<=*n;i++) col[i]=;
for(i=;i<=n;i++)
for(j=i+;j<=n;j++){
int d1=dis[][i]+dis[][j];
int d2=dis[][i]+dis[][j]+Dis;
int d3=dis[][i]+dis[][j];
int d4=dis[][i]+dis[][j]+Dis;
if(d1>x&&d2>x&&d3>x&&d4>x) return false;
if(d1>x){
G2[i].push_back(j+n);
G2[j].push_back(i+n);
}
if(d2>x){
G2[i].push_back(j);
G2[j+n].push_back(i+n);
}
if(d3>x){
G2[i+n].push_back(j);
G2[j+n].push_back(i);
}
if(d4>x){
G2[i+n].push_back(j+n);
G2[j].push_back(i);
}
}
for(i=;i<=*n;i++){
if(col[i]) continue;
num=;
if(!dfs(i)){
for(j=;j<=num;j++) {
col[q[j]>n?q[j]-n:q[j]+n]=W;
col[q[j]]=W;
}
if(!dfs(i>n?i-n:i+n)) return false;
}
}
return true;
}
int main()
{
while(~scanf("%d%d%d",&n,&a,&b)){
init();
int L=,R=;
scan();
while(L<=R){
int mid=(L+R)>>;
if(check(mid)){ ans=mid;R=mid-;}
else L=mid+;
}
printf("%d\n",ans);
}
return ;
}
下面这样建图有些问题,读者可以思考一下。
if(d2<=x&&d1>x&&d3>x){
G2[i].push_back(j+n);
G2[j+n].push_back(i);
}
if(d1<=x&&d2>x&&d4>x){
G2[i].push_back(j);
G2[j].push_back(i);
}
if(d4<=x&&d3>x&&d1>x){
G2[i+n].push_back(j);
G2[j].push_back(i+n);
}
if(d3<=x&&d4>x&&d2>x){
G2[i+n].push_back(j+n);
G2[j+n].push_back(i+n);
}
HDU1815 Building roads(二分+2-SAT)的更多相关文章
- POJ Building roads [二分答案 2SAT]
睡觉啦 #include <iostream> #include <cstdio> #include <cstring> #include <algorith ...
- poj 2749 Building roads (二分+拆点+2-sat)
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6229 Accepted: 2093 De ...
- HDU 1815, POJ 2749 Building roads(2-sat)
HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...
- Building roads
Building roads Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- [POJ2749]Building roads(2-SAT)
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8153 Accepted: 2772 De ...
- poj 3625 Building Roads
题目连接 http://poj.org/problem?id=3625 Building Roads Description Farmer John had just acquired several ...
- BZOJ 1626: [Usaco2007 Dec]Building Roads 修建道路( MST )
计算距离时平方爆了int结果就WA了一次...... ------------------------------------------------------------------------- ...
- bzoj1626 / P2872 [USACO07DEC]道路建设Building Roads
P2872 [USACO07DEC]道路建设Building Roads kruskal求最小生成树. #include<iostream> #include<cstdio> ...
- bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路 -- 最小生成树
1626: [Usaco2007 Dec]Building Roads 修建道路 Time Limit: 5 Sec Memory Limit: 64 MB Description Farmer J ...
随机推荐
- 【转】Git介绍
版本控制 说到版本控制,脑海里总会浮现大学毕业是写毕业论文的场景,你电脑上的毕业论文一定出现过这番景象! 毕业论文_初稿.doc 毕业论文_修改1.doc 毕业论文_修改2.doc 毕业论文_修改3. ...
- window7 3G/4G拨号操作
Win7系统Modem拨号操作指导:https://wenku.baidu.com/view/bb855b1dc77da26925c5b0e1.html 拨号上网设置APN,拨号号码,帐号和密码:ht ...
- 主攻ASP.NET MVC4.0之重生:发邮箱激活验证
导入Interop.jmail组件 using jmail;using System.Net.Mail; 点击下载源代码 Controller相关代码 public class SendEmailCo ...
- 支持鼠标拖拽滑动的jQuery焦点图
在线演示 本地下载
- 20145210姚思羽《网络对抗》MSF基础应用实验
20145210姚思羽<网络对抗>MSF基础应用实验 实验后回答问题 1.用自己的话解释什么是exploit,payload,encode. exploit就是进行攻击的那一步 paylo ...
- JAVAWeb学习总结(二)
JavaWeb学习总结(二)——Tomcat服务器学习和使用(一) 一.Tomcat服务器端口的配置 Tomcat的所有配置都放在conf文件夹之中,里面的server.xml文件是配置的核心文件. ...
- RDLC 微软报表 导出Excel时产生多个工作表 (worksheet)
. I have added two obejcts data source to Report Viewer. 2. in RDLC i have created two tables and in ...
- MVC6 OWin Microsoft Identity 自定义验证
1. Startup.cs中修改默认的验证设置 //app.UseIdentity(); app.UseCookieAuthentication(options => { //options.A ...
- 异常:没有找到本地方法库,java.lang.UnsatisfiedLinkError: no trsbean in java.library.path
1.问题描述 迁移环境中遇到这个问题 : Fri Apr 20 15:22:31 CST 2018, Exception:500004___-500004,没有找到本地方法库,java.lang.Un ...
- Spring初学之Spel初配
Spel又时候可以方便我们为bean的属性赋值,如下配置文件就是常用的一些使用: <?xml version="1.0" encoding="UTF-8" ...