[CVPR2018]Learning to Adapt Structured Output Space for Semantic Segmentation
学习适应结构化输出空间进行语义分割
在语义分割场景中,虽然物体在外表上不同,但是他们的输出是结构化且共享很多例如空间分布, 局部内容等信息。所以作者提出了multi-level的输出空间adaptation。 本文提出一种在未知领域强化source领域知识的finetune,作者观察到分割效果不好的痛点 (例如源领域是天气好的图片,目标领域是下雨天气,预测下雨天气分割时,对于车子这些原有领域 已知的目标,我们要强化它的分割效果)。 作者主要做了两组实验,在虚拟数据集如GTA5等训练,然后在真实数据测试。在一个城市的数据 训练,然后在另一个城市测试。 |
Overview of the Proposed Model
算法主要流程:
为了解决分割网络在一个领域往另一个领域迁移,首先在source数据集训练一个backbone。然后对于source和target数据集抽样,通过对样本的feature map做输入,训练一个判别网络来判断target图有哪些知识是来源于source。然后用判别器得到的Ladv和Lseg同时对网络进行finetune。
Network Architecture and Training
Discriminator
判别器由{64, 128, 256, 512, 1}x4x4, stride=2的卷积层组合而成,除了最后一层都用0.2的leaky ReLU激活。最后一层加入upsample恢复大小,不使用BN。
Segmentation Network
在deeplab-v2上做改动,改部分层的stride、加入ASPP,实验说在Cityspaces上有65.1% mIoU。
NetworkTraining
输入源图片得到分割输出Ps,求Lseg训练分割网络。然后对于目标输入,得到分割输出后Pt,和Ps一起优化Ld。另外还要优化对抗损失Ladv。
Objective Function for Domain Adaptation
总损失函数为,i 是multi-level的不同卷积层特征图进行处理得到的结果,分为前后两部分交叉熵。
第一部分是分割效果的交叉熵:,第二部分则是
,在部分的设计在于最大化特征图target中属于source的像素点,目的在于让网络识别哪些是之前source领域有的知识。
至于怎么训练网络判断,,z=0表示点输入目标领域,不在我们知道的知识范围内。训练则通过在两个领域分别采样即可。
优化目标,在最小化source image的分割损失的情况下,最大化目标预测值被认为是源预测值的可能,即最大化运用会原先的知识。
Experimental Results
[CVPR2018]Learning to Adapt Structured Output Space for Semantic Segmentation的更多相关文章
- 论文笔记之: Deep Metric Learning via Lifted Structured Feature Embedding
Deep Metric Learning via Lifted Structured Feature Embedding CVPR 2016 摘要:本文提出一种距离度量的方法,充分的发挥 traini ...
- 论文笔记: Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation
Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation 2018-11-03 09:58:58 Paper: http ...
- Struck: Structured Output Tracking with Kernels
reference: Struck: Structured Output Tracking with Kernels hot topic: tracking-by-detection methods, ...
- 论文笔记:A Review on Deep Learning Techniques Applied to Semantic Segmentation
A Review on Deep Learning Techniques Applied to Semantic Segmentation 2018-02-22 10:38:12 1. Intr ...
- Review of Semantic Segmentation with Deep Learning
In this post, I review the literature on semantic segmentation. Most research on semantic segmentati ...
- Semantic Segmentation on Remotely Sensed Images Using an Enhanced Global Convolutional Network with Channel Attention and Domain Specific Transfer Learning
创新点: 1.在GCN(global convolutional network)基础上,把他的backbone替换成更多层的,使其适应中分辨率影像,resnet50,101,152 2.利用 cha ...
- 论文笔记:(CVPR2017)PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
目录 一. 存在的问题 二. 解决的方案 1.点云特征 2.解决方法 三. 网络结构 四. 理论证明 五.实验效果 1.应用 (1)分类: ModelNet40数据集 (2)部件分割:ShapeNet ...
- Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Self-Supervised Contrastive Learning Method
论文阅读: Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Sel ...
- [论文][半监督语义分割]Adversarial Learning for Semi-Supervised Semantic Segmentation
Adversarial Learning for Semi-Supervised Semantic Segmentation 论文原文 摘要 创新点:我们提出了一种使用对抗网络进行半监督语义分割的方法 ...
随机推荐
- 【財務会計】BS科目とは・PL科目とは
「BS科目」「PL科目」という言葉がありますが.聞いたことあるけどよくわからん!っていう人は多いと思います.なので.簡単にご説明を. BS科目は「いくらあるか」 「BS科目」は.「B/S科目」と書くこ ...
- 线程池ThreadPoolExecutor使用
一.简介 线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为: ThreadPoolExecutor(int corePoolSize, int ...
- cgi、fastcgi、php-cgi、php-fpm的关系
1. CGI CGI全称是"公共网关接口"(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行"交谈"的一种工具,其 ...
- Get Error when restoring database in Sql Server 2008 R2
When I restored a database I got an error: "The backup set holds a backup of a database ot ...
- Spring研磨分析、Quartz任务调度、Hibernate深入浅出系列文章笔记汇总
Spring研磨分析.Quartz任务调度.Hibernate深入浅出系列文章笔记汇总 置顶2017年04月27日 10:46:45 阅读数:1213 这系列文章主要是对Spring.Quartz.H ...
- Returning Values from Bash Functions
转自:https://www.linuxjournal.com/content/return-values-bash-functions Bash functions, unlike function ...
- JDBC剖析篇(1):java中的Class.forName()
一.Class.forName() 在Java中我们一般用下面这样的语句来连接数据库(以MySQL为例) Class.forName("com.mysql.jdbc.Driver" ...
- [电子书] 《Android编程兵书》PDF
Android编程兵书 内容简介: 这是一本Android开发书籍,内容讲解详细,例子丰富,能帮助读者举一反三.在<Android编程兵书>中,每一个知识点的描述都非常详细,并且每一个知识 ...
- GraphSAGE 代码解析(四) - models.py
原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(一) - unsupervised_train.py GraphSAGE 代码解析(二) - layers.py ...
- HDU 4582 DFS spanning tree(DFS+贪心)(2013ACM-ICPC杭州赛区全国邀请赛)
Problem Description Consider a Depth-First-Search(DFS) spanning tree T of a undirected connected gra ...