数矩形

Time Limit: 20 Sec  Memory Limit: 128 MB
[Submit][Status][Discuss]

Description

  最近某歌手在研究自己的全国巡回演出,他将所有心仪的城市都用平面上一个点来表示,并打算从中挑选出4个城市作为这次巡回演出的地点。
  为了显示自己与众不同,他要求存在一个矩形使得挑选出的4个点恰好是这个矩形的4个顶点,并且希望这个矩形的面积最大。
  这可急坏了经纪人,于是他向全球歌迷征集方案,当然你这位歌迷一定不会错过这个机会。

Input

  第一行是一个正整数N,表示平面上点的个数(即某歌手心仪的城市数)。
  接下来N行,每行是两个整数Xi,Yi,表示对应点的坐标。

Output

  输出一个数,表示最大矩形面积。

Sample Input

  8
  -2 3
  -2 -1
  0 3
  0 -1
  1 -1
  2 1
  -3 1
  -2 1

Sample Output

   10

HINT

  1<=N<=1500 , -10^8<=Xi,Yi<=10^8

Main idea

  给出平面上的若干个点,求出可由这些点作为顶点构成的矩形的最大面积。

Solution

  显然是一道计算几何题。
  先考虑矩形的特征:对角线长度相同并且对角线的中点在同一位置
  然后我们可以n^2枚举出所有对角线的长度并且求出其中点位置,按照长度为第一关键字,中点坐标为第二关键字sort一遍,那么显然可构成矩形的四个点的对角线一定是连续的。
  然后我们枚举所有情况,用矢量叉积来求矩形的面积。
  证明一下复杂度:发现最坏情况应该是所有的中点聚集在同一个点上,以其作为圆心,对角线长度作为直径拓展出成为一个圆,这样的话会有1500/2条长度相同的需要枚举的边,但是由于这是一个圆,所以两点连线不作为直径的构成的边几乎都是不需要枚举的,复杂度正确。

Code

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<queue>
using namespace std; const int ONE=; int n;
int cnt,num;
int l[ONE*ONE],r[ONE*ONE];
long long Ans; struct power
{
long long x,y;
}a[ONE]; struct point
{
long long dist;
int i,j;
power mid;
}b[ONE*ONE]; int cmp(const point &a,const point &b)
{
if(a.dist<b.dist) return ;
if(a.dist>b.dist) return ;
if(a.dist==b.dist)
{
if(a.mid.x<b.mid.x) return ;
if(a.mid.y<b.mid.y) return ;
}
return ;
} int get()
{
int res,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} long long Get_dist(power a,power b)
{
return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y);
} long long Get_area(power a1,power a2,power b1,power b2)
{
long long x1=a2.x-a1.x, y1=a2.y-a1.y;
long long x2=b2.x-b1.x, y2=b2.y-b1.y;
return abs( (x1*y2)-(x2*y1) );
} void Deal()
{
for(int k=;k<=num;k++)
{
if(l[k]==r[k]) continue;
for(int i=l[k];i<=r[k];i++)
for(int j=i+;j<=r[k];j++)
{
Ans=max(Ans,Get_area( a[b[i].i],a[b[i].j] , a[b[j].i],a[b[j].j]) );
}
}
} int main()
{
n=get();
for(int i=;i<=n;i++)
{
a[i].x=get(); a[i].y=get();
} for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
{
b[++cnt].dist=Get_dist(a[i],a[j]);
b[cnt].mid.x=(a[i].x+a[j].x);
b[cnt].mid.y=(a[i].y+a[j].y);
b[cnt].i=i; b[cnt].j=j;
} sort(b+,b+cnt+,cmp); int i=; while(i<=cnt)
{
i++;
l[++num]=i;
while(b[i].dist==b[i+].dist && b[i].mid.x==b[i+].mid.x && b[i].mid.y==b[i+].mid.y && i<=cnt)
{
i++;
}
r[num]=i;
} Deal();
printf("%lld",Ans/); }

【BZOJ2338】【HNOI2011】数矩形 [计算几何]的更多相关文章

  1. bzoj2338[HNOI2011]数矩形 计算几何

    2338: [HNOI2011]数矩形 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1535  Solved: 693[Submit][Status ...

  2. bzoj-2338 2338: [HNOI2011]数矩形(计算几何)

    题目链接: 2338: [HNOI2011]数矩形 Time Limit: 20 Sec  Memory Limit: 128 MB Description Input   Output 题意: 思路 ...

  3. 【bzoj2338】[HNOI2011]数矩形 计算几何

    题目描述 题解 计算几何 由于对角线平分且相等的四边形是矩形,因此我们可以把每条对角线存起来,按照对角线长度和中点位置为关键字排序,这样对于每个相同长度和中点的对角线就排到了一起. 于是对于每段可能形 ...

  4. 【计算几何】bzoj2338 [HNOI2011]数矩形

    对于两条线段,若其中点重合,且长度相等,那么它们一定是某个矩形的对角线. N*N地处理出所有线段,排序,对每一部分中点重合.长度相等的线段进行暴力枚举,更新答案. 用 long double 注意EP ...

  5. BZOJ2338: [HNOI2011]数矩形

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2338 中学数学老师告诉我们,一个矩形的两条对角线相等,所以只要把所有的边拿出来,记录下中点坐标 ...

  6. BZOJ 2338 HNOI2011 数矩形 计算几何

    题目大意:给定n个点,求一个最大的矩形,该矩形的四个顶点在给定的点上 找矩形的方法是记录全部线段 若两条线段长度相等且中点重合 这两条线段就能够成为矩形的对角线 于是我们找到全部n*(n-1)/2条线 ...

  7. {bzoj2338 [HNOI2011]数矩形 && NBUT 1453 LeBlanc}平面内找最大矩形

    思路: 枚举3个点,计算第4个点并判断是否存在,复杂度为O(N3logN)或O(N3α) 考虑矩形的对角线,两条对角线可以构成一个矩形,它们的长度和中点必须完全一样,于是将所有线段按长度和中点排序,那 ...

  8. 【BZOJ2338】[HNOI2011]数矩形 几何

    [BZOJ2338][HNOI2011]数矩形 题解:比较直观的做法就是枚举对角线,两个对角线能构成矩形当且仅当它们的长度和中点相同,然后用到结论:n个点构成的矩形不超过n^2.5个(不会证),所以两 ...

  9. 【题解】Luogu P3217 [HNOI2011]数矩形

    原题链接:P3217 [HNOI2011]数矩形 什么??!怎么又是计算几何,您钛毒瘤了-- 这道题真的是毒瘤 凸包?旋转卡壳? 看一下数据,N<=1500? 暴力 没错,就是暴力,N^2没毛病 ...

随机推荐

  1. 区分Oracle的数据库,实例,服务名,SID

    文章摘自:http://www.zhetao.com/content240 感谢分享O(∩_∩)O~ 在实际的开发应用中,关于Oracle数据库,经常听见有人说建立一个数据库,建立一个Instance ...

  2. spring读取properties和其他配置文件的几种方式

    1.因为spring容器的一些机制,在读取配置文件进行数据库的配置等等是很有必要的,所以我们要考虑配置文件的的读取方式以及各个方式的实用性 2.配置文件的读取方式我这里介绍2种,目的是掌握这2种就可以 ...

  3. 【连载】Bootstrap开发漂亮的前端界面之自定义右键菜单

    连载: 1<教你用Bootstrap开发漂亮的前端界面> 2.<Bootstrap开发漂亮的前端界面之实现原理> 网页中的自定义右键菜单越来越普遍,自定义右键菜单可以增强用户体 ...

  4. 【APUE】Chapter14 Advanced I/O

    14.1 Introduction 这一章介绍的内容主要有nonblocking I/O, record locking, I/O multiplexing, asynchronous I/O, th ...

  5. [B2B、B2C、C2C] 区别介绍

    最近在学习建站系统的时候,偶尔我们的老大会说几个自己所不太了解的名词“简称”,所以呢?我就总结了一下,如果有不全面的地方,还请博友们多多指点! B2B B2B(也有写成BTB)是指企业对企业之间的营销 ...

  6. CSP201512-1: 数位之和

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  7. Web负载均衡技术

    Web负载均衡(Load Balancing),简单地说就是给我们的服务器集群分配“工作任务”,而采用恰当的分配方式,对于保护处于后端的Web服务器来说,非常重要. 负载均衡的策略有很多,我们从简单的 ...

  8. 平衡二叉树(AVL Tree)

    在学习算法的过程中,二叉平衡树是一定会碰到的,这篇博文尽可能简明易懂的介绍下二叉树的相关概念,然后着重讲下什么事平衡二叉树. (由于作图的时候忽略了箭头的问题,正常的树一般没有箭头,虽然不影响描述的过 ...

  9. RDL/RDLC批量单据打印

    使用RDL或RDLC进行单据打印时,单张单据打印比较直观简单,无需说明.下面我们来谈一下批量单据打印的实现方法.以下以RDL的ReportBuilder设计环境为例进行讲解,RDLC.VS设计环境同理 ...

  10. BZOJ 3531 SDOI2014 旅行 树链剖分+线段树动态开点

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3531 题意概述: 给出一棵N个点的树,树上的每个结点有一个颜色和权值,支持以下四种操作: ...