此题是 2018 年 ICPC Asia Beijing Regional Contest 的 C 题。

题目大意

求斜边长度不超过 $n$($ n \le 10^9$) 的勾股数的数量。不计两直角边的顺序,即勾股数 $(a, b, c)$ 和 $(b, a, c)$ 视作同一组。

分析

这是一道颇为经典的计数问题。

请先阅读维基百科上的 Pythagorean triple 条目。

设斜边为 $n$ 的勾股数有 $f(n)$ 个。又设斜边为 $n$ 的本原勾股数有 $g(n)$ 个。于是有

$ f(n) = \sum_{d \mid n} g(d)$ 。

令 $F$ 为 $f$ 的前缀和,令 $G$ 为 $g$ 的前缀和。有

\begin{aligned}

F(n) &= \sum_{i = 1}^{n} f(n) \\

&= \sum_{i = 1}^{n} \sum_{d \mid i} g(d) \\

&= \sum_{i = 1}^{n} G(\floor{n / i})

\end{aligned}

根据 $G$ 的定义,有

\begin{aligned}

G(n) &= \sum_{i = 1}^{n} g(i) \\

&=\sum_{\substack{1 \le x \le n \\ x \text{ is odd} } } \sum_{\substack{1 \le y \le n \\ y \text{ is even}}} [x^2 + y^2 \le n] [\gcd(x, y) = 1] \\

&= \frac{1}{2} \left(\sum_{1 \le x \le n } \sum_{1 \le y \le n } - \sum_{\substack{1 \le x \le n \\ x \text{ is odd}} } \sum_{\substack{1 \le y \le n \\ y \text{ is odd}} } \right) [x^2 + y^2 \le n] [\gcd(x, y) = 1]

\end{aligned}

\begin{aligned}

& \left(\sum_{1 \le x \le n } \sum_{1 \le y \le n } - \sum_{\substack{1 \le x \le n \\ x \text{ is odd}} } \sum_{\substack{1 \le y \le n \\ y \text{ is odd}} } \right) [x^2 + y^2 \le n] [\gcd(x, y) = 1] \\

&= \left(\sum_{1 \le x \le n } \sum_{1 \le y \le n } - \sum_{\substack{1 \le x \le n \\ x \text{ is odd}} } \sum_{\substack{1 \le y \le n \\ y \text{ is odd}} } \right) [x^2 + y^2 \le n] \sum_{d \mid \gcd(x, y)} \mu(d) \\

&= \sum_{1\le d \le \sqrt{n/2}} \mu(d) \left(\sum_{1 \le x \le n } \sum_{1 \le y \le n } - \sum_{\substack{1 \le x \le n \\ x \text{ is odd}} } \sum_{\substack{1 \le y \le n \\ y \text{ is odd}} } \right) [x^2 + y^2 \le n] [d \mid x] [d \mid y] \\

&= \sum_{1\le d \le \sqrt{n/2}} \mu(d) \left(\sum_{ 1 \le i \le n/d } \sum_{1 \le y \le n } - \sum_{\substack{1 \le i \le n/d \\ di \text{ is odd}} } \sum_{\substack{1 \le y \le n \\ y \text{ is odd}} } \right) [(id)^2 + y^2 \le n] [d \mid y] \\

&= \sum_{1\le d \le \sqrt{n/2}} \mu(d) \left(\sum_{ 1 \le i \le \sqrt{n}/d } \sum_{1 \le j \le \sqrt{n-(id)^2}/d } - \sum_{\substack{1 \le i \le \sqrt{n}/d \\ di \text{ is odd}} } \sum_{\substack{1 \le j \le \sqrt{n-(id)^2}/d \\ dj \text{ is odd}} } \right) 1 \\

&= \sum_{1\le d \le \sqrt{n/2}} \mu(d) \left(\sum_{ 1 \le i \le \sqrt{n}/d } \floor{ \frac{\sqrt{n-(id)^2}}{d} } - [d \text{ is odd}] \sum_{\substack{1 \le i \le \sqrt{n}/d \\ i \text{ is odd}} } \sum_{\substack{1 \le j \le \sqrt{n-(id)^2}/d \\ j \text{ is odd}} } 1 \right) \\

&= \sum_{1\le d \le \sqrt{n/2}} \mu(d) \left(\sum_{ 1 \le i \le \sqrt{n}/d } \floor{ \frac{\sqrt{n-(id)^2}}{d} } - [d \text{ is odd}] \sum_{\substack{1 \le i \le \sqrt{n}/d \\ i \text{ is odd}} } \floor{\frac{\frac{\sqrt{n-(id)^2}}{d} + 1}{2}} \right)

\end{aligned}

TODO:复杂度分析。

Implementation

预处理 $G$ 的前 2000 万项。

注意:代码不完整。

int main() {
FAST_READ
cout << fixed << setprecision(1);
#ifdef LOCAL
ifstream in("main.in");
cin.rdbuf(in.rdbuf());
#endif const int nax = 1e9 + 1;
// println(nax);
const int pre_n = 2e7;
vl pre_G(pre_n + 1); // pre-calculate some items of G
const int max_v = sqrt(pre_n); stp(i, 1, max_v + 1, 2) {
const int i2 = i * i;
const int max_j = sqrt(pre_n - i2);
stp (j, 2, max_j + 1, 2) {
if (__gcd(i, j) == 1) {
pre_G[i2 + j * j]++;
}
}
} rng (i, 1, pre_n + 1) {
pre_G[i] += pre_G[i - 1];
} const int max_d = sqrt(nax/2); const auto mu = get_mu(max_d); auto G = [&mu, &pre_G, pre_n](int n) { // # of primitive Pythagorean triples with c <= n
if (n <= pre_n) return pre_G[n];
ll ans = 0;
const int max_gcd = sqrt(n / 2);
const int tmp = (int)sqrt(n);
rng (d, 1, max_gcd + 1) {
ll sum = 0;
const int max_i = tmp / d;
for (int i = 1; i <= max_i; ) {
const int arg = int(sqrt(n - sq(i*d))) / d;
const int j = int(sqrt(n - sq(arg * d))) / d;
sum += (j - i + 1) * arg;
if (d & 1) {
sum -= (j - i + 1 + (i & 1)) / 2 * ((arg + 1) / 2);
}
i = j + 1;
}
ans += sum * mu[d];
}
return ans / 2;
}; auto F = [&](int n) { // # of Pythagorean triples with c <= n
ll ans = 0;
for (int i = 1; i <= n; ) {
int arg = n / i;
int j = n / arg;
ans += 1LL * (j - i + 1) * G(arg);
i = j + 1;
}
return ans;
}; int T; scan(T); rep (T) {
int n; scan(n);
println(F(n));
} #ifdef LOCAL
cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n";
#endif
return 0;
}

hihoCoder #1872 : Pythagorean triple的更多相关文章

  1. Codeforces Round #368 (Div. 2) C. Pythagorean Triples(数学)

    Pythagorean Triples 题目链接: http://codeforces.com/contest/707/problem/C Description Katya studies in a ...

  2. Pythagorean Triples

    Pythagorean Triples time limit per test 1 second memory limit per test 256 megabytes input standard ...

  3. codeforces-707 C. Pythagorean Triples

    C. Pythagorean Triples time limit per test 1 second memory limit per test 256 megabytes input standa ...

  4. Pythagorean Triples 707C

    Katya studies in a fifth grade. Recently her class studied right triangles and the Pythagorean theor ...

  5. Codeforces Round #368 (Div. 2) C. Pythagorean Triples 数学

    C. Pythagorean Triples 题目连接: http://www.codeforces.com/contest/707/problem/C Description Katya studi ...

  6. Pythagorean Triples毕达哥斯拉三角(数学思维+构造)

    Description Katya studies in a fifth grade. Recently her class studied right triangles and the Pytha ...

  7. codeforces707C:Pythagorean Triples

    Description Katya studies in a fifth grade. Recently her class studied right triangles and the Pytha ...

  8. codeforces 707C C. Pythagorean Triples(数学)

    题目链接: C. Pythagorean Triples time limit per test 1 second memory limit per test 256 megabytes input ...

  9. Codeforces Round #368 (Div. 2) C

    Description Katya studies in a fifth grade. Recently her class studied right triangles and the Pytha ...

随机推荐

  1. vue入门笔记

    Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架.与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用.Vue 的核心库只关注视图层,不仅易于上手,还便于与 ...

  2. JetBrains PyCharm 2017.3注册码

    JetBrains PyCharm 2017.3注册码 (1)在激活界面的License server输入:http://idea.liyang.io:或者:点击help→Register→Licen ...

  3. Python的virtualenv你用过吗?

    1. 为什么要有virtualenv 在使用 Python 开发的过程中,工程一多,难免会碰到不同的工程依赖不同版本的库的问题: 亦或者是在开发过程中不想让物理环境里充斥各种各样的库,引发未来的依赖灾 ...

  4. python——元组(tuple)基本操作

    元组被称为只读列表,数据可被查询,但不能被修改,类似于列表的切片操作,元组写在小括号里面()元素之前用逗号隔开 对于一些不想被修改的数据,可以用元组来保存 #  创建元组 1)创建空元组 # 创建空元 ...

  5. 网站title标题被改并被百度网址安全中心提醒的解决办法

    国庆假日期间我们Sine安全接到众多网站站长求助网站标题被改导致在百度搜索中百度安全中心提醒被拦截,导致网站正常用户无法浏览网站被跳转到一些菠菜du博网站,而且很明显的一个特征就是在百度中搜索关键词的 ...

  6. C语言实例解析精粹学习笔记——33(扑克牌的结构表示)

    实例33: 使用“结构”定义一副扑克牌,并对变量赋值,输出结果 思路: 扑克牌有4种花色,用枚举类型表示花色,其他都是结构体的简单应用 程序代码: #include <stdio.h> # ...

  7. 多线程编程以及socket编程_Linux程序设计4chapter15

    看了Linux程序设计4中文版,学习了多线程编程和socket编程.本文的程序参考自Linux程序设计4的第15章. 设计了一个客户端程序,一个服务端程序.使用TCP协议进行数据传输. 客户端进程创建 ...

  8. linux命令大全(转载)

    在搭建openstack时遇到问题,导致上网查询相关信息.找到一篇不错的文章,希望对大家有用.下附地址: http://blog.csdn.net/junbujianwpl/article/detai ...

  9. nginx 负载均衡 反向代理

    nginx 通过方向代理实现负载均衡,负载均衡是大流量网站要做的措施,单从字面上的意思来理解为N台服务器平均分担负载,不会因为某一台服务器负载高宕机而影响用户访问网站,负载均衡至少需要三台服务器, 既 ...

  10. Java并发基础--Thread类

    一.Thread类的构成 Thread类实现Runnable接口.部分源码如下: 二.Thread类常用方法 1.currentThread()方法 currentThread()方法可以返回代码段正 ...