题目描述

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。

输入

一个整数,为N。

输出

一个整数,为所求的答案。

样例输入

6

样例输出

15


题解

欧拉函数

易得知满足gcd(n,x)==i的小于等于n的x的个数为phi(n/i),

并且欧拉函数可以在O(√n)的时间内快速求出。。

于是可以先求出所有n的因子,再用欧拉函数得出答案。

由于因子是成对出现的,所以因子并不需要枚举到n,只需枚举到√n。如果i是n的因子,那么n/i也是n的因子,注意此时i*i==n不能算进答案内。

#include <cstdio>
typedef long long ll;
ll phi(ll x)
{
ll ans = x , t = x , i;
for(i = 2 ; i * i <= x ; i ++ )
{
if(t % i == 0) ans = ans * (i - 1) / i;
while(t % i == 0) t /= i;
}
if(t > 1) ans = ans * (t - 1) / t;
return ans;
}
int main()
{
ll n , i , ans = 0;
scanf("%lld" , &n);
for(i = 1 ; i * i <= n ; i ++ )
{
if(n % i == 0)
{
ans += i * phi(n / i);
if(i * i < n) ans += (n / i) * phi(i);
}
}
printf("%lld\n" , ans);
return 0;
}

【bzoj2705】[SDOI2012]Longge的问题 欧拉函数的更多相关文章

  1. BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)

    题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...

  2. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  3. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  4. [SDOI2012] Longge的问题 - 欧拉函数

    求 \(\sum\limits_{i=1}^{n}gcd(i,n)\) Solution 化简为 \(\sum\limits_{i|n}^{n}φ(\dfrac{n}{i})i\) 筛出欧拉函数暴力求 ...

  5. bzoj 2705 [SDOI2012]Longge的问题——欧拉函数大水题

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 撕逼题.不就是枚举gcd==d,求和phi[ n/d ]么. 然后预处理sqrt (n ...

  6. poj 2480 Longge's problem [ 欧拉函数 ]

    传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2 ...

  7. POJ 2480 Longge's problem 欧拉函数—————∑gcd(i, N) 1<=i <=N

    Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6383   Accepted: 2043 ...

  8. Bzoj-2705 Longge的问题 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 题意: 求 sigma(gcd(i,n), 1<=i<=n<2^3 ...

  9. [SDOI2012]Longge的问题 欧拉反演_欧拉函数

    Code: #include<cstdio> #include<algorithm> #include<cmath> #include<string> ...

随机推荐

  1. yarn的学习之2-容量调度器和预订系统

    本文翻译自 http://hadoop.apache.org/docs/r2.8.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html 和http ...

  2. myEclipse 常用快捷键,工具等记录

    小的不才,从北大青鸟毕业,出来之后到第一家公司进行工作,当时认为自己很牛逼,很无敌,但是出来之后发现在学校里学的那些东西,在工作中,除了会写一点if...else之外,连循环都很少写. 然而有用的工具 ...

  3. 第一次使用Git上传本地项目到github

    看了好多帖子,终于在混乱中找到自己适合的方法......自我感觉这个比较简单. 先安装本地git,官方下载地址:http://git-scm.com/download/  根据你自己的系统 下载对应版 ...

  4. 微信程序跳转到页面底部 scroll-view

    wx.createSelectorQuery().select('#j_page').boundingClientRect(function (rect) { wx.pageScrollTo({ sc ...

  5. laravel 中出现SQLSTATE[HY000] [2002] 如何解决?

    在日常开发中总是难免遇到各式各样的错误,还有许多错误常常是重复出现的 以下是报错信息! SQLSTATE[HY000] [2002] ������ӷ���һ��ʱ���û���ȷ�

  6. eclipse 右键没有Build Path

    如果Project Explorer右键没有build pathWindow ->show view 选择package explorer 参考https://blog.csdn.net/cod ...

  7. Leecode刷题之旅-C语言/python-28.实现strstr()

    /* * @lc app=leetcode.cn id=28 lang=c * * [28] 实现strStr() * * https://leetcode-cn.com/problems/imple ...

  8. javaWeb总结

    url传值时:如out.println("<td><a href = 'delete.jsp?user=" + user + "'>删除</ ...

  9. html中显示指数、底数

    在web前端开发中,经常要显示指数.底数,比如x2,loga,我们可以使用span标签,通过控制标签内字体大小,对齐方式来实现想要的效果.代码如下 <table> <tr> & ...

  10. java 单例模式(singleton)

    概念: 保证一个类仅有一个实例,并提供一个访问它的全局访问点. 要点: 1.某个类只有一个实例. 2.它必须自行创建这个示例. 3.必须自行向整个系统提供这个示例. 实现: 1.拥有一个私有的构造器. ...