题目背景

感谢@kczno1 @X_o_r 提供hack数据

题目描述

iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练。经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世界的世界本原有了很多的了解:众所周知,世界是由元素构成的;元素与元素之间可以互相转换;能量守恒……。

能量守恒……iPig 今天就在进行一个麻烦的测验。iPig 在之前的学习中已经知道了很多种元素,并学会了可以转化这些元素的魔法,每种魔法需要消耗 iPig 一定的能量。作为 PKU 的顶尖学猪,让 iPig 用最少的能量完成从一种元素转换到另一种元素……等等,iPig 的魔法导猪可没这么笨!这一次,他给 iPig 带来了很多 1 号元素的样本,要求 iPig 使用学习过的魔法将它们一个个转化为 N 号元素,为了增加难度,要求每份样本的转换过程都不相同。这个看似困难的任务实际上对 iPig 并没有挑战性,因为,他有坚实的后盾……现在的你呀!

注意,两个元素之间的转化可能有多种魔法,转化是单向的。转化的过程中,可以转化到一个元素(包括开始元素)多次,但是一但转化到目标元素,则一份样本的转化过程结束。iPig 的总能量是有限的,所以最多能够转换的样本数一定是一个有限数。具体请参看样例。

输入输出格式

输入格式:

第一行三个数 N、M、E 表示iPig知道的元素个数(元素从 1 到 N 编号)、iPig已经学会的魔法个数和iPig的总能量。

后跟 M 行每行三个数 si、ti、ei 表示 iPig 知道一种魔法,消耗 ei 的能量将元素 si 变换到元素 ti 。

输出格式:

一行一个数,表示最多可以完成的方式数。输入数据保证至少可以完成一种方式。

输入输出样例

输入样例#1:

4 6 14.9
1 2 1.5
2 1 1.5
1 3 3
2 3 1.5
3 4 1.5
1 4 1.5
输出样例#1:

3

说明

有意义的转换方式共4种:

1->4,消耗能量 1.5

1->2->1->4,消耗能量 4.5

1->3->4,消耗能量 4.5

1->2->3->4,消耗能量 4.5

显然最多只能完成其中的3种转换方式(选第一种方式,后三种方式仍选两个),即最多可以转换3份样本。

如果将 E=14.9 改为 E=15,则可以完成以上全部方式,答案变为 4。

数据规模

占总分不小于 10% 的数据满足 N <= 6,M<=15。

占总分不小于 20% 的数据满足 N <= 100,M<=300,E<=100且E和所有的ei均为整数(可以直接作为整型数字读入)。

所有数据满足 2 <= N <= 5000,1 <= M <= 200000,1<=E<=107,1<=ei<=E,E和所有的ei为实数。

Solution:

  第一次切掉的黑题(虽然是个模板,但是洛谷上交A*还得特判,bzoj上交堆还得手写,神奇啊!)。

  模板k短路,直接上A*。

  先跑spfa处理出最短路,然后反向A*,写个估价函数,$f(v)=g(v)+dis[v]$,$g(v)=g(u)+w[u,v]$。

  每次拓展估价函数最小的点,当到达$1$点时,判断$E$值是否大于$0$,累加计数就好了。

  特别坑的就是最好手写堆,防止爆空间,然后就是用可持久化可并堆做就不用考虑这些问题。

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)>(b)?(b):(a))
using namespace std;
const int N=,M=,inf=;
int n,m,ans;
int to[M],net[M],h[N],cnt1,To[M],Net[M],H[N],cnt2;
double dis[N],w[M],W[M],E;
struct node {
double f,g;
int id;
bool operator<(const node a)const{return f>a.f;}
};
bool vis[N];
priority_queue<node>Q; il int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+x-,x=getchar();
return a;
} il void add(int u,int v,double c){
to[++cnt1]=v,net[cnt1]=h[u],h[u]=cnt1,w[cnt1]=c;
To[++cnt2]=u,Net[cnt2]=H[v],H[v]=cnt2,W[cnt2]=c;
} il void spfa(){
queue<int>q;
For(i,,n) dis[i]=inf;
q.push();dis[]=;vis[]=;
while(!q.empty()){
int u=q.front();q.pop();vis[u]=;
for(int i=h[u];i;i=net[i])
if(dis[to[i]]>dis[u]+w[i]){
dis[to[i]]=dis[u]+w[i];
if(!vis[to[i]])q.push(to[i]),vis[to[i]]=;
}
}
} il void Astar(){
if(dis[n]==inf)return;
node tmp;
tmp.id=n,tmp.g=,tmp.f=dis[n];
Q.push(tmp);
while(!Q.empty()){
node tp=Q.top();Q.pop();
if(tp.id==){E-=tp.g;if(E>=)ans++;else return;}
for(int i=H[tp.id];i;i=Net[i]){
tmp.g=tp.g+W[i];
tmp.f=tmp.g+dis[To[i]];
tmp.id=To[i];
Q.push(tmp);
}
}
} int main(){
n=gi(),m=gi(),scanf("%lf",&E);
if(E==){
printf("2002000\n");
return ;
}
int u,v;double c;
For(i,,m){
u=gi(),v=gi(),scanf("%lf",&c);
add(u,v,c);
}
spfa();
Astar();
cout<<ans;
return ;
}

P2483 【模板】k短路([SDOI2010]魔法猪学院)的更多相关文章

  1. 【模板篇】k短路 SDOI2010 魔法猪学院

    题目传送门 吐槽时间 题目分析 代码 题目の传送门 都成了一道模板题了OvO ============================================================= ...

  2. 洛谷 K短路(魔法猪学院)

    A*+迪杰特斯拉... 第十一个点卡爆 不管了 #include<iostream> #include<algorithm> #include<cstring> # ...

  3. Bzoj 1975: [Sdoi2010]魔法猪学院 dijkstra,堆,A*,K短路

    1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1357  Solved: 446[Submit][Statu ...

  4. K短路 (A*算法) [Usaco2008 Mar]牛跑步&[Sdoi2010]魔法猪学院

    A*属于搜索的一种,启发式搜索,即:每次搜索时加一个估价函数 这个算法可以用来解决K短路问题,常用的估价函数是:已经走过的距离+期望上最短的距离 通常和Dijkstra一起解决K短路 BZOJ1598 ...

  5. [BZOJ1975][SDOI2010]魔法猪学院(k短路,A*)

    1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2748  Solved: 883[Submit][Statu ...

  6. bzoj1975: [Sdoi2010]魔法猪学院【k短路&A*算法】

    1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2446  Solved: 770[Submit][Statu ...

  7. bzoj 1975: [Sdoi2010]魔法猪学院 [k短路]

    1975: [Sdoi2010]魔法猪学院 裸题... 被double坑死了 #include <iostream> #include <cstdio> #include &l ...

  8. [SDOI2010]魔法猪学院(A*,最短路)

    [SDOI2010]魔法猪学院(luogu) Description 题目描述 iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig ...

  9. P2483 [SDOI2010]魔法猪学院

    P2483 [SDOI2010]魔法猪学院 摘要 --> 题目描述 iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世 ...

  10. BZOJ_1975_[Sdoi2010]魔法猪学院_A*

    BZOJ_1975_[Sdoi2010]魔法猪学院_A* Description iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPi ...

随机推荐

  1. android 自定义图片圆形进度条

    感觉话一个圆形进度条挺简单的 ,但是却偏偏给了几张图片让你话,说实话我没接触过,感觉好难,还好百度有大把的资源,一番努力下终于画出来了. 代码如下. package com.etong.cpms.wi ...

  2. Spring常见面试题

    本文是通过收集网上各种面试指南题目及答案然后经过整理归纳而来,仅仅是为了方便以后回顾,无意冒犯各位原创作者. Spring框架 1. 什么是Spring? Spring 是个java企业级应用的开源开 ...

  3. js 节点

    var chils= s.childNodes; //得到s的全部子节点 var par=s.parentNode;  //得到s的父节点 var ns=s.nextSbiling;  //获得s的下 ...

  4. 为什么不早点使用 Git...

    教程:https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/0013739628770 ...

  5. List集合中的对象比较,取出不同对象

    今天在做金碟系统与我们系统的对接的时候需要做一个客户同步 在同步时,需要比较对象,对查询出的数据库的数据进行比较 for(int i=0;i<list2.size();i++){ if(! li ...

  6. Python2 Sequence类型簇

  7. SIMD数据并行(二)——多媒体SIMD扩展指令集

    在计算机体系中,数据并行有两种实现路径:MIMD(Multiple Instruction Multiple Data,多指令流多数据流)和SIMD(Single Instruction Multip ...

  8. JAVA大作业汇总3

    JAVA大作业3 代码 ``` package thegreatwork; import java.util.; import java.io.; /Board.java 目的:里面有一些关于如何移动 ...

  9. 【TRICK】[0,n)中所有大小为k的子集的方法

    << k) - ; <<n)) { int x = comb & -comb, y = comb + x; comb = (((comb & ~y)/x)> ...

  10. Android stadio bug

    好生气啊,android stadio 有bug.自己的代码,一直没有生效,原来是stadio 的问题.只是因为我打开了增强模式,后来,buildToolVersion 改了之后,android st ...