[POJ1784]Huffman's Greed
题面在这里
题意
给出一棵\(n\)个节点的二叉查找树的中序遍历中每个节点的访问次数\(p[i]\),和相邻两节点\(i\)和\(i+1\)的访问次数\(q[i]\),构造一棵二叉查找树使得\(\sum_{i=1}^{n}d[i](s[i]+1)+\sum_{i=0}^{n}(max(d[i],d[i+1])+1)[即查询两者之间值的实际比较次数]\times(q[i])\)最小,输出这个最小值
数据范围
\]
sol
利用树的递归定义,设\(f[i][j]\)表示\([l,r]\)内节点合并为一棵树的时候的答案,再根据叶子情况进行讨论,可以得到\(O(Tn^3)\)的DP,其中主要部分是
\]
(这里定义\(f[i][i-1]=f[j+1][j]=0\))
可以看到转移方程实际和\(p,q\)无关(其实这明摆着就是最优排序二叉树问题)
而这样做是会T的,然而其实上面的转移式和石子合并的转移式比较类似,于是可以通过类似的方法得出其也满足\(s[i][j-1]\le s[i][j]\le s[i+1][j]\)的性质,于是就可以AC了
代码
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define RG register
using namespace std;
typedef long long ll;
const int N=405;
ll n,p[N],q[N],f[N][N],s[N][N];
int main()
{
while(scanf("%lld",&n)==1){
if(!n)break;
for(RG int i=1;i<=n;i++)scanf("%lld",&p[i]),p[i]+=p[i-1];
for(RG int i=0;i<=n;i++)scanf("%lld",&q[i]),q[i]+=q[i-1];
memset(f,63,sizeof(f));
for(RG int i=1;i<=n;i++){
f[i][i]=q[i]+p[i]-p[i-1];
s[i][i]=i;
if(i>=2)f[i][i]-=q[i-2];
}
for(RG int i=1;i<=n+1;i++)f[i][i-1]=0;
for(RG int l=2;l<=n;l++)
for(RG int i=1;l+i-1<=n;i++)
for(RG int k=s[i][i+l-2];k<=s[i+1][i+l-1];k++)
if(i>=2){
f[i][l+i-1]=min(f[i][l+i-1],f[i][k-1]+f[k+1][l+i-1]+p[l+i-1]-p[i-1]+q[l+i-1]-q[i-2]);
if(f[i][l+i-1]==f[i][k-1]+f[k+1][l+i-1]+p[l+i-1]-p[i-1]+q[l+i-1]-q[i-2])s[i][l+i-1]=k;
}
else {
f[i][l+i-1]=min(f[i][l+i-1],f[i][k-1]+f[k+1][l+i-1]+p[l+i-1]-p[i-1]+q[l+i-1]);
if(f[i][l+i-1]==f[i][k-1]+f[k+1][l+i-1]+p[l+i-1]-p[i-1]+q[l+i-1])s[i][l+i-1]=k;
}
printf("%lld\n",f[1][n]);
}
return 0;
}
[POJ1784]Huffman's Greed的更多相关文章
- 杭电ACM分类
杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...
- 转载:hdu 题目分类 (侵删)
转载:from http://blog.csdn.net/qq_28236309/article/details/47818349 基础题:1000.1001.1004.1005.1008.1012. ...
- 哈夫曼(huffman)树和哈夫曼编码
哈夫曼树 哈夫曼树也叫最优二叉树(哈夫曼树) 问题:什么是哈夫曼树? 例:将学生的百分制成绩转换为五分制成绩:≥90 分: A,80-89分: B,70-79分: C,60-69分: D,<60 ...
- (转载)哈夫曼编码(Huffman)
转载自:click here 1.哈夫曼编码的起源: 哈夫曼编码是 1952 年由 David A. Huffman 提出的一种无损数据压缩的编码算法.哈夫曼编码先统计出每种字母在字符串里出现的频率, ...
- [老文章搬家] 关于 Huffman 编码
按:去年接手一个项目,涉及到一个一个叫做Mxpeg的非主流视频编码格式,编解码器是厂商以源代码形式提供的,但是可能代码写的不算健壮,以至于我们tcp直连设备很正常,但是经过一个UDP数据分发服务器之后 ...
- jpeg huffman coding table
亮度DC系数的取值范围及序号: 序号(size) 取值范围 0 0 1 - ...
- 优先队列实现Huffman编码
首先把所有的字符加入到优先队列,然后每次弹出两个结点,用这两个结点作为左右孩子,构造一个子树,子树的跟结点的权值为左右孩子的权值的和,然后将子树插入到优先队列,重复这个步骤,直到优先队列中只有一个结点 ...
- Huffman树进行编码和译码
//编码#include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> ...
- Huffman Tree
哈夫曼(Huffman)树又称最优二叉树.它是一种带权路径长度最短的树,应用非常广泛. 关于Huffman Tree会涉及到下面的一些概念: 1. 路径和路径长度路径是指在树中从一个结点到另一个结点所 ...
随机推荐
- python中使用空格还是使用 Tab键缩进的建议
对于程序员来说,其实Tab和空格远远不只是“立场”问题那么简单. 在不同的编辑器里tab的长度可能不一致,所以在一个编辑器里用tab设置缩进后,在其它编辑器里看可能缩进就乱了.空格不会出现这个问题,因 ...
- Python学习手册之控制结构(一)
在上一篇文章中,我们对 Python 进行了简单介绍和介绍了 Python 的基本语法,现在我们继续介绍 Python 控制结构. 查看上一篇文章请点击:https://www.cnblogs.com ...
- Angularjs 跨域post数据到springmvc
先贴网上己有解决方案链接: http://www.tuicool.com/articles/umymmqY (讲的是springmvc怎么做才可以跨域) http://my.oschina.net/ ...
- git初始化仓库相关
当我们需要新建一个git项目会遇到的问题 全局设置 git config --global user.name "名字" git config --global user.emai ...
- 12 TCP服务器 进程 线程 非阻塞
1.单进程服务器 from socket import * serSocket = socket(AF_INET, SOCK_STREAM) # 重复使用绑定的信息 serSocket.setsock ...
- Bug是一种财富-------研发同学的错题集、测试同学的遗漏用例集
此文已由作者王晓明授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 各位看官,可能看到标题的你一定认为这是一篇涉嫌"炒作"的文章,亦或是为了吸引眼球而起的标 ...
- sed 集合(项目中的笔记)
奇数行和偶数行合并为一行: Like: Sequence number: 5398Sequence name: Glyma.16G123500.1Sequence number: 5399Sequen ...
- lua基础知识笔记
一.lua中的数据类型 1.数值 a = 1 b = 1.2 2.字符串 c = "hello world" 3.布尔 d = true f = false 4.表(Table) ...
- ACE_Select_Reactor_T 介绍 (2)
本章目录 ACE_Select_Reactor_T 介绍 类继承图 类协作图 类主要成员变量 事件处理函数调用图 事件处理主流程 handle_events 函数流程 handle_events_i ...
- Epplus下的一个将Excel转换成List的范型帮助类
因为前一段时间公司做项目的时候,用到了Excel导入和导出,然后自己找了个插件Epplus进行操作,自己将当时的一些代码抽离出来写了一个帮助类. 因为帮助类是在Epplus基础之上写的,项目需要引用E ...