1 tibble包简介

包名: tibble
编码: UTF-
最新版本: 1.2
标题: 简单数据框
描述: 构建一个 'tbl_df' 类,可以比传统的R数据框提供更好的检查和打印功能。
作者: Hadley Wickham , Romain Francois ,Kirill Müller, RStudio
URL: https://github.com/hadley/tibble
要求: R (>= )
Github: https://github.com/hadley/tibble

  tibble包是一个轻量级的包,它实现的data.frame的重新塑造,保留了data.frame中经过实践证明有效的部分,吸取了专注于数据操作的dplyr包的基本思想。tibble包提供了更优于data.frame的性能,包括:打印,提取子集和因子操作。

tibble包内提供的主要函数:

名称

功能

as_tibble

强制转换lists和matrices为数据框(data.frame)

tibble

创建数据框(data.frame)或列表(list)

tribble

智能行(Row-wise)创建tibble

obj_sum/ type_sum/ tbl_sum

给出对象的简明摘要:对象类型和数据框大小

rownames

行名的操作工具(非常有用):可以提取行名为列或列为行名

has_name

检查命名元素的存在has_name(iris, "Species")

repair_names

修复对象的名称(如果没有命名则用V+i代替)

all_equal

数据框相等的柔性比较,忽略行和列的排列顺序

glimpse

有点像str(),主要是查看数据集的结构

enframe

将向量变为数据框

print.tbl_df

print(x,n)打印数据集x的前n行,默认为10行,有点像head()

add_column

给数据框添加列

add_row

给数据框添加行

is.tibble

检测对象是否为tibble

knit_print.trunc_mat

截断显示

2 安装和使用

2.1 安装

从CRAN安装:

install.packages("tibble")

从github安装:

# install.packages("devtools")
devtools::install_github("hadley/tibble")

2.2 创建tibbles对象

可以利用as_tibble()函数将已经存在的对象(data.frame,list,matrix,or table)强制转为tibble对象:

library(tibble)
as_tibble(iris)
#> # A tibble:  ×
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>           <dbl>       <dbl>        <dbl>       <dbl>  <fctr>
#>            5.1         3.5          1.4         0.2  setosa
#>            4.9         3.0          1.4         0.2  setosa
#>            4.7         3.2          1.3         0.2  setosa
#>            4.6         3.1          1.5         0.2  setosa
#>            5.0         3.6          1.4         0.2  setosa
#>            5.4         3.9          1.7         0.4  setosa
#>            4.6         3.4          1.4         0.3  setosa
#>            5.0         3.4          1.5         0.2  setosa
#>            4.4         2.9          1.4         0.2  setosa
#>           4.9         3.1          1.5         0.1  setosa
#> # ... with  more rows

也可以利用tibble()函数创建:

tibble(x = :, y = , z = x ^  + y)
#> # A tibble:  ×
#>       x     y     z
#>   <int> <dbl> <dbl>
#>
#>
#>
#>
#>               

a <- :
tibble(a, b = a * )
## # A tibble:  ×
##       a     b
##    <int> <dbl>
##
##
##
##
##          

tibble(a, b = a * , c = )
## # A tibble:  ×
##       a     b     c
##     <int> <dbl> <dbl>
##
##
##
##
##               

tibble(x = runif(), y = x * )
# # A tibble:  ×
#        x         y
#      <dbl>     <dbl>
#   0.7098188 1.4196377
#   0.2790267 0.5580533
#   0.2655437 0.5310874
#   0.1237294 0.2474587
#   0.9018147 1.8036293
#   0.1594413 0.3188827
#   0.2592028 0.5184056
#   0.6570324 1.3140648
#   0.8955551 1.7911102
#  0.1940897 0.3881794

tibble(x = letters)
# # A tibble:  ×
#        x
#      <chr>
#       a
#       b
#       c
#       d
#       e
#       f
#       g
#       h
#       i
#      j
# # ... with  more rows

tibble(x = :, y = list(:, :, :))
#> # A tibble:  ×
#>       x          y
#>   <int>     <list>
#>        <]>
#>       <]>
#>       <]>

也可以使用tribble()函数一行一行的定义一个tibble对象:

tribble(
  ~x, ~y,  ~z,
  ,  3.6,
  ,  8.5
)
#> # A tibble:  ×
#>       x     y     z
#>   <chr> <dbl> <dbl>
#>      a        3.6
#>      b        8.5

查看类型,最底层还是data.frame:

class(as_tibble(iris))
#> [] "tbl_df"     "tbl"        "data.frame"

2.3 添加行和列

### 添加行
add_row(.data, ..., .before = NULL, .after = NULL)
.data 要添加的数据框
.before , .after  在哪行之前或之后添加该数据
df <- tibble(x = :, y = :)
df
#> # A tibble:  ×
#>       x     y
#>   <int> <int>
#>
#>
#>           1
library(dplyr)
df %>% add_row(x = 4, y = 0, .before = 2)
#> # A tibble: 4 × 2
#>       x     y
#>   <dbl> <dbl>
#> 1     1     3
#> 2     4     0
#> 3     2     2
#> 4     3     1

df %>% add_row(x = 4:5, y = 0:-1)
#> # A tibble: 5 × 2
#>       x     y
#>   <int> <int>
#> 1     1     3
#> 2     2     2
#> 3     3     1
#> 4     4     0
#> 5     5    -1

add_row(df, x = 4)
#> # A tibble: 4 <U+00D7> 2
#>       x     y
#>   <dbl> <int>
#> 1     1     3
#> 2     2     2
#> 3     3     1
#> 4     4    NA
### 添加列
add_column(.data, ..., .before = NULL, .after = NULL)
.data 要添加的数据框
.before , .after  在哪行=列之前或之后添加该数据

df %>%
  add_column(z = -:, w = )
#> # A tibble:  ×
#>       x     y     z     w
#>   <int> <int> <int> <dbl>
#>               -
#>
#>                     

df %>%
  add_column(z = -:, .after = )
#> # A tibble:  ×
#>       x     z     y
#>   <int> <int> <int>
#>          -
#>
#>                

df %>%
  add_column(w = :, .before = "x")
#> # A tibble:  ×
#>       w     x     y
#>   <int> <int> <int>
#>
#>
#>                

2.4 命名操作

2.4.1 rownames 行名的操作工具

  df  数据框

  var 用于rownames的列的名称

  has_rownames(df)  确定数据框是否有行名

  remove_rownames(df)  删除数据框的行名

library(tibble)
head(mtcars)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4
## Mazda RX4 Wag
## Datsun
## Hornet  Drive
## Hornet Sportabout
## Valiant                         

head(iris)
##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##           5.1         3.5          1.4         0.2  setosa
##           4.9         3.0          1.4         0.2  setosa
##           4.7         3.2          1.3         0.2  setosa
##           4.6         3.1          1.5         0.2  setosa
##           5.0         3.6          1.4         0.2  setosa
##           5.4         3.9          1.7         0.4  setosa

has_rownames(mtcars)
## [] TRUE

has_rownames(iris)
## [] FALSE

has_rownames(remove_rownames(mtcars))
## [] FALSE

head(remove_rownames(mtcars))
##    mpg cyl disp  hp drat    wt  qsec vs am gear carb
##
##
##
##
##
##                 

  rownames_to_column(df, var = "rowname")  数据框的行名作为数据框的列,列名为rowname

  column_to_rownames(df, var = "rowname")  数据框的某列作为行名

head(rownames_to_column(mtcars,"row2col"))
##             row2col  mpg cyl disp  hp drat    wt  qsec vs am gear carb
##          Mazda RX4
##      Mazda RX4 Wag
##         Datsun
##     Hornet  Drive
##  Hornet Sportabout
##            Valiant               

mtcars_tbl <- as_tibble(rownames_to_column(mtcars))
mtcars_tbl
# # A tibble:  ×
#              rowname   mpg   cyl  disp    hp  drat    wt  qsec    vs    am
#                <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#           Mazda RX4
#       Mazda RX4 Wag
#          Datsun
#      Hornet  Drive
#   Hornet Sportabout
#             Valiant
#          Duster
#           Merc 240D
#            Merc
#           Merc
# # ... with  more rows, and  more variables: gear <dbl>, carb <dbl>

head(column_to_rownames(as.data.frame(mtcars_tbl)))
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4
## Mazda RX4 Wag
## Datsun
## Hornet  Drive
## Hornet Sportabout
## Valiant                         

df <- rownames_to_column(mtcars,"row2col")
column_to_rownames(df,"row2col")

2.4.2 has_name  检查数据框或者其他对象中是否存在指定命名元素,返回逻辑值(TRUE or FALSE)

has_name(x, name)
x  数据框或其他命名对象
name  需检查的元素

has_name(iris, "Species")
## [] TRUE

has_name(mtcars, "gears")
## [] FALSE

2.4.3 repair_names 修复对象的名称(如果没有命名则用V+i代替)

repair_names(x, prefix = "V", sep = "")
x  命名的向量
prefix  字符串,前缀,该前缀用于新列名
sep  分隔符
list(, , )
# [[]]
# []
#
# [[]]
# []
#
# [[]]
# [] 

repair_names(list(, , )) # works for lists, too
# $V1
# []
#
# $V2
# []
#
# $V3
# [] 

tbl <- as_tibble(structure(list(, , ), class = "data.frame"),validate = FALSE)
tbl
# A tibble:  ×
# ... with  variables:  <dbl>,  <dbl>,  <dbl>
repair_names(tbl)
# A tibble:  <U+00D7>
# ... with  variables: V1 <dbl>, V2 <dbl>, V3 <dbl>

repair_names(list(,,),prefix = "new",sep = "-")
# $``
# []
#
# $``
# []
#
# $``
# [] 

2.5 其他函数

2.5.1 obj_sum/ type_sum/ tbl_sum  给出对象的简明摘要:对象类型和数据框大小

obj_sum(x)
# 如果is_s3_vector值为TRUE,也就是是S3类型的向量,同时返回对象的尺寸的对象数据类型

type_sum(x)
# 给出对象类型简短摘要

tbl_sum(x)
# 给出一个类似于表对象的简短的文字描述,包括维数,数据源,可能的组(for dplyr)

is_vector_s3(x)
> obj_sum(:)
# [] "int [10]"

> obj_sum(matrix(:))
# [] "int [10 <U+00D7> 1]"

> obj_sum(Sys.Date())
# [] "date [1]"

> obj_sum(Sys.time())
# [] "dttm [1]"

> obj_sum(mean)
# [] "fun"

2.5.2 all_equal  数据框柔性比较,忽略行和列的排列顺序

  当使用all.equal比较两个tbl_df,默认情况下行和列的顺序是被忽略的,并且类型也不是强制要求。

all_equal(target, current, ignore_col_order = TRUE, ignore_row_order = TRUE, convert = FALSE, ...)
"all.equal"(target, current, ignore_col_order = TRUE, ignore_row_order = TRUE, convert = FALSE, ...)

参数:
target, current 要比较的两个数据框
ignore_col_order 是否需要忽略列顺序,默认为TRUE
ignore_row_order 是否需要忽略行顺序,默认为TRUE
convert  是否需要转换为相似的类型,默认为FALSE,如果为TRUE,会将因子factor转为字符character,整型integer double转为双精度浮点型
...
# 对行号和列号进行采样,打乱行列顺序
scramble <- function(x) x[sample(nrow(x)), sample(ncol(x))]

# 转为tbl-df类型
mtcars_df <- as_tibble(mtcars)

# 默认情况下行列顺序是忽略的
all.equal(mtcars_df, scramble(mtcars_df))
# [] TRUE

# 修改默认行列顺序不被忽略
all.equal(mtcars_df, scramble(mtcars_df), ignore_col_order = FALSE)
# [] TRUE

all.equal(mtcars_df, scramble(mtcars_df), ignore_row_order = FALSE)
# [] "Component “mpg”: Mean relative difference: 0.3503521"
# [] "Component “cyl”: Mean relative difference: 0.4912281"
# [] "Component “disp”: Mean relative difference: 0.5690846"
# [] "Component “hp”: Mean relative difference: 0.5386953"
# [] "Component “drat”: Mean relative difference: 0.1387415"
# [] "Component “wt”: Mean relative difference: 0.3286861"
# [] "Component “qsec”: Mean relative difference: 0.1222072"
# [] "Component “vs”: Mean relative difference: 2"
# [] "Component “am”: Mean relative difference: 2"
# [] "Component “gear”: Mean relative difference: 0.32"
# [] "Component “carb”: Mean relative difference: 0.8"

# 默认情况下all.equal对变量的差异很敏感
df1 <- tibble(x = "a")
df2 <- tibble(x = factor("a"))
all.equal(df1, df2)
# [] "Incompatible type for column x: x character, y factor"

all.equal(df1, df2,convert = TRUE)
# [] "Factor levels not equal for column x"
# Warning message:
#   Incompatible type for column x: x character, y factor

2.5.3 glimpse  有点像str(),主要是查看数据集的结构

glimpse(x, width = NULL, ...)
x glimpse的对象
width 输出宽度:默认为tibble.width设定的宽度(如果有限)或者是控制台显示的宽度

glimpse(mtcars)

# Observations:
# Variables:
# $ mpg  <dbl> ...
# $ cyl  <dbl> , , , , , , , , , , , , , , , , , , , , ,...
# $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8,...
# $ hp   <dbl> , , , , , , , , , , , , , ...
# $ drat <dbl> ....
# $ wt   <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150,...
# $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90,...
# $ vs   <dbl> , , , , , , , , , , , , , , , , , , , , ,...
# $ am   <dbl> , , , , , , , , , , , , , , , , , , , , ,...
# $ gear <dbl> , , , , , , , , , , , , , , , , , , , , ,...
# $ carb <dbl> , , , , , , , , , , , , , , , , , , , , ,...

if (!requireNamespace("nycflights13", quietly = TRUE))
  stop("Please install the nycflights13 package to run the rest of this example")

# install.packages("nycflights13")

glimpse(nycflights13::flights)

# Observations: ,
# Variables:
# $ year           <, , , , , , , , ...
# $ month          <, , , , , , , , , , , , , , , , , ...
# $ day            <, , , , , , , , , , , , , , , , , ...
# $ dep_time       <, , , , , , , , , , ...
# $ sched_dep_time <, , , , , , , , , , ...
# $ dep_delay      <dbl> , , , -, -, -, -, -, -, -, -, -, -, -,...
# $ arr_time       <, , , , , , , , , , ...
# $ sched_arr_time <, , , , , , , , , , ...
# $ arr_delay      <dbl> , , , -, -, , , -, -, , -, -, ,...
# $ carrier        <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6"...
# $ flight         <, , , , , , , , , ...
# $ tailnum        <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N...
# $ origin         <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LG...
# $ dest           <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IA...
# $ air_time       <dbl> , , , , , , , , , , ...
# $ distance       <dbl> , , , , , , , , , ...
# $ hour           <dbl> , , , , , , , , , , , , , , , , , ...
# $ minute         <dbl> , , , , , , , , , , , , , , , ...
# $ time_hour      <dttm> -- ::, -- ::, --...

2.5.4 enframe 将向量变为数据框

  将元向量或者列表转为两列的数据框,如果元向量没有命名,使用自然序列命名列。

enframe(x, name = "name", value = "value")
x 元向量
name,value  两列命名,默认分别为name和value

enframe(:)
# # A tibble:  ×
#   name value
#   <int> <int>
#
#
#           

enframe(c(a = , b = ))
# # A tibble:  ×
#    name value
#   <chr> <dbl>
#      a
#      b     

2.5.5 print.tbl_df

  print(x,n)打印数据集x的前n行,默认为10行,有点像head()

  描述矩阵的工具

"print"(x, ..., n = NULL, width = NULL, n_extra = NULL)

trunc_mat(x, n = NULL, width = NULL, n_extra = NULL)

x 展示的对象
n 要显示的行,如果为NULL(默认)并且行数小于tibble.print_max设定的值则会打印所有的行,否则会打印tibble.print_max设定的函数
width 生成的文本的宽度默认为NULL,此种情况下和使用getOption("tibble.width")或者getOption("width")设定值;后者只显示适应屏幕的列。也可以设定options(tibble.width = Inf)来显示所有的列
n_extra 整个tibble的宽度太小而打印的额外的信息,默认为NULL,会打印tibble.max_extra_cols作为额外的列信息
trunc_mat(mtcars)
# # data.frame [ × ]
#      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
# *  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#
#
#
#
#
#
#
#
#
#
# ... with  more rows

print(as_tibble(mtcars))
# # A tibble:  ×
#      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
# *  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#
#
#
#
#
#
#
#
#
#
# ... with  more rows

print(as_tibble(mtcars), n = )
# # A tibble:  ×
#     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
# * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#
# # ... with  more rows
print(as_tibble(mtcars), n = )
# # A tibble:  ×
#      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
# * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#
#
#
# # ... with  more rows
print(as_tibble(mtcars), n = )
# 全部打印

if (!requireNamespace("nycflights13", quietly = TRUE))
  stop("Please install the nycflights13 package to run the rest of this example")

print(nycflights13::flights, n_extra = )
print(nycflights13::flights, width = Inf)

2.5.6 is.tibble 检测对象是否为tibble

is.tibble(x)
is_tibble(x)

参考链接:http://www.rdocumentation.org/packages/tibble/versions/1.2

本文链接:http://www.cnblogs.com/homewch/p/5827928.html

tibble包:高效显示表格数据的结构的更多相关文章

  1. 接收Android数据 递归显示表格数据

    <html> <head> <title>展示</title> <script type="text/javascript" ...

  2. MySQL在控制台上以竖行显示表格数据

    直接在SQL语句后面加\G即可,如: select * from user limit 10\G; 如果想要知道这些参数可以直接在命令行后面加入\?

  3. jxl读取Excel表格数据

    调用jxl包实现Excel表格数据的读取,代码如下: import java.io.File; import java.io.IOException; import java.util.ArrayLi ...

  4. SSM_CRUD新手练习(9)显示分页数据

    我们已经做好了用来显示数据的分页模板,现在只需要将我们从后台取出的数据填充好,显示出来. 我们使用<c:forEach>标签循环取出数据,所以需要先导入JSTL标签库 <%@ tag ...

  5. easyui学习笔记7—在手风琴中显示表格

    在这一篇中我们看看如何在手风琴里面显示表格数据的. 1.先看看引用的资源 <link rel="stylesheet" type="text/css" h ...

  6. 如何在iOS地图上高效的显示大量数据

    2016-01-13 / 23:02:13 刚才在微信上看到这篇由cocoachina翻译小组成员翻译的文章,觉得还是挺值得参考的,因此转载至此,原文请移步:http://robots.thought ...

  7. [ios3-地图] 如何在iOS地图上高效的显示大量数据 [转]

    [转至:http://blog.csdn.net/pjk1129/article/details/17358337] 原文:How To Efficiently Display Large Amoun ...

  8. R语言数据分析利器data.table包 —— 数据框结构处理精讲

        R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理 ...

  9. DT包 -- R语言中自定义表格数据

    DT 包提供了 JavaScript 库 DataTables 的一个R接口,它使得R对象(矩阵或数据框)可以在HTML页面上显示为表格. 该包的DataTables函数生成的表格提供了数据的筛选.分 ...

随机推荐

  1. R中的<-和=赋值符号的细致区别

    <-创建的变量的作用范围可以在整个顶层环境,而=仅仅在一个局部环境. 但要<-创建的变量如果是在函数实参传递的时候创建的,其的作用范围可以在整个顶层环境,有一个前提条件:对应的形参在函数内 ...

  2. [Java] Java执行Shell命令

    Methods ProcessBuilder.start() 和 Runtime.exec() 方法都被用来创建一个操作系统进程(执行命令行操作),并返回 Process 子类的一个实例,该实例可用来 ...

  3. Mac Pro 利用PHP导出SVN新增或修改过的文件

    先前在 Windows 操作系统下,习惯用 TortoiseSVN 导出新增或修改过的文件([相当实用]如何让TortoiseSVN导出新增或修改过的文件 ),最近换成了 Mac Pro 笔记本电脑, ...

  4. JavaScript闭包(Closure)学习笔记

    闭包(closure)是JavaScript语言的一个难点,也是它的特色,很多高级应用都要依靠闭包实现. 下面就是我的学习笔记,对于JavaScript初学者应该是很有用的. 一.变量的作用域 要理解 ...

  5. Linux 定时任务 Crontab命令 详解

    前言 crontab是Unix和Linux用于设置周期性被执行的指令,是互联网很常用的技术,很多任务都会设置在crontab循环执行,如果不使用crontab,那么任务就是常驻程序,这对你的程序要求比 ...

  6. 关于requirejs

    24718-12042010 00001h6wzKLpfo3gmjJ8xoTPw5mQvY YA8vwka9tH!vibaUKS4FIDIkUfy!!f 3C"rQCIRbShpSlDcFT ...

  7. centos 安装redis(一台机器可以安装多个redis)

    我在运行时redis版本是2.8 操作前设置以管理员身份: 打开终端输入 su - 安装redis需要确保系统已经安装了(gcc gcc-c++)# yum -y install gcc gcc-c+ ...

  8. SSI指令

    1.SSI定义 SSI是英文Server Side Includes的缩写, 即“服务器端包含”或“服务器端嵌入”技术. SSI在HTML文件中,可以通过注释行调用的命令或指针,是一种基于服务器端的网 ...

  9. centos6.5 lamp 环境 使用yum安装方法

    从网上找了一些 最后整理了下 1.安装Apache yum -y install httpd # 开机自启动 chkconfig httpd on # 启动httpd 服务 service httpd ...

  10. nginx自动检测后台服务器健康状态

    转自http://www.iyunv.com/thread-38535-1-1.html 公司业务线上对后端节点的健康检查是通过nginx_upstream_check_module模块做的,这里我将 ...