写在前面:

  大家都知道DOM的操作很昂贵。 

  然后贵在什么地方呢?

  一、访问DOM元素

  二、修改DOM引起的重绘重排

一、访问DOM  

  像书上的比喻:把DOM和JavaScript(这里指ECMScript)各自想象为一个岛屿,它们之间用收费桥梁连接,ECMAScript每次访问DOM,都要途径这座桥,并交纳“过桥费”,访问DOM的次数越多,费用也就越高。因此,推荐的做法是尽量减少过桥的次数,努力待在ECMAScript岛上。我们不可能不用DOM的接口,那么,怎样才能提高程序的效率?

  1. 既然无法避免,那就减少访问。(width、offsetTop、left。。。能少就少,可以缓存起来的,就缓存)

    // code1错误
    console.time();
    for(var i = ; i < times; i++) {
    document.getElementById('div1').innerHTML += 'a';
    }
    console.timeEnd(); // code2正确
    console.time();
    var str = '';
    for(var i = ; i < times; i++) {
    str += 'a';
    }
    document.getElementById('div2').innerHTML = str;
    console.timeEnd();
    ////////////////////////

  2. html集合&遍历DOM

    html集合类似数组,但是跟数组还是不一样的。如: document.getElementsByTagName('a') 返回的html集合。这个集合是实时更新的,即后面代码修改了DOM,会反映在这个html集合里面。可尝试代码。

<body>
<ul id='fruit'>
<li> apple </li>
<li> orange </li>
<li> banana </li>
</ul>
</body>
<script type="text/javascript">
var lis = document.getElementsByTagName('li');
var peach = document.createElement('li');
peach.innerHTML = 'peach';
document.getElementById('fruit').appendChild(peach); console.log(lis.length); //
</script>

    正因为这个原因:html集合,读取 length 属性比数组消耗大多了。

    要解决这个问题并不难,在遍历DOM集合的时候,缓存length就好了。不要每次使用就获取,主要体现在for循环中(你应该知道,for循环中,每一次都会执行判读语句,读取length)

console.time();
var lis0 = document.getElementsByTagName('li');
var str0 = '';
for(var i = ; i < lis0.length; i++) {
str0 += lis0[i].innerHTML;
}
console.timeEnd(); console.time();
var lis1 = document.getElementsByTagName('li');
var str1 = '';
for(var i = , len = lis1.length; i < len; i++) {
str1 += lis1[i].innerHTML;
}
console.timeEnd();

 二、重绘重排

  1.什么是重绘重排?

  浏览器下载完页面中的所有组件——HTML标记、JavaScript、CSS、图片之后会解析生成两个内部数据结构——DOM树渲染树

   在文档初次加载时,浏览器引擎通过解析 html文档 构建一棵DOM树,之后根据DOM元素的几何属性构建一棵用于展示渲染的渲染树。渲染树中的节点被称为“帧”或“盒",符合CSS模型的定义,可理解为(包括理解页面元素为一个具有大小,填充,边距,边框和位置的盒子)。由于隐藏元素不需要显示,渲染树中并不包含DOM树中隐藏的元素(知道这点有用)。 当渲染树构建完成,浏览器把每一个元素放到正确的位置上,然后再根据每一个元素的其他样式,绘制页面。

  由于浏览器的流布局,对渲染树的计算通常只需要遍历一次就可以完成。但table及其内部元素除外,它可能需要多次计算才能确定好其在渲染树中节点的属性,通常要花3倍于同等元素的时间。这也是为什么我们要避免使用table做布局的一个原因。

  重绘:是一个元素外观的改变所触发的浏览器行为,例如改变visibility、outline、背景色等属性(上面说到的其他属性)。浏览器会根据元素的新属性重新绘制,使元素呈现新的外观。重绘不会带来重新布局,并不一定伴随重排。

  重排:当DOM的变化影响了元素的几何属性(宽或高),浏览器需要重新计算元素的几何属性,同样其他元素的几何属性和位置也会因此受到影响。浏览器会使渲染树中受到影响的部分失效,并重新构造渲染树。这个过程称为重排。重排一定伴随着重绘。

  2. 触发重排的操作:

  2.1 修改DOM元素几何属性

    修改元素大小,位置,内容(一般只有重绘,但是内容可能导致元素大小变化)

  2.2 DOM树结构发生变化

    当DOM树的结构变化时,例如节点的增减、移动等,也会触发重排。浏览器引擎布局的过程,类似于树的前序遍历,是一个从上到下从左到右的过程。 通常在这个过程中,当前元素不会再影响其前面已经遍历过的元素。所以,如果在body最前面插入一个元素,会导致整个文档的重新渲染,而在其后插入一个元 素,则不会影响到前面的元素。

   2.4 改变浏览器大小

  

  3.渲染树变化的排队和刷新

  思考下面代码:

 var ele = document.getElementById('myDiv');
ele.style.borderLeft = '1px';
ele.style.borderRight = '2px';
// var _top = ele.offsetTop; //刷新队列
ele.style.padding = '5px';

  三行代码,三次修改元素的几何属性,浏览器应该发生三次重排重绘。

  但是浏览器并不会这么笨,它也是有做优化的。它会把三次修改“保存”起来(大多数浏览器通过队列化修改并批量执行来优化重排过程,也有设置时间片段的),一次完成!

  然而,如果你在三行代码中,以下获取DOM布局信息。(为了返回最新的布局信息,将立即执行渲染树变化队列的更新)

  如上面被注释的第4行,如果取消注释会导致(2+3)、(5)两次重排;

  获取关于DOM布局信息的属性:

  1. offsetTop, offsetLeft, offsetWidth, offsetHeight
  2. scrollTop, scrollLeft, scrollWidth, scrollHeight
  3. clientTop, clientLeft, clientWidth, clientHeight
  4. getComputedStyle() (currentStyle in IE)

  4 应对方法:尽量减少重绘次数、减少重排次数、缩小重排的影响范围。

  4.1 合并多次操作,如上面的操作

ele.style.cssText = 'border-left: 1px; border-right: 2px; padding: 5px;';

  4.2 将需要多次重排的元素,position属性设为absolute或fixed,这样此元素就脱离了文档流,它的变化不会影响到其他元素。例如有动画效果的元素就最好设置为绝对定位。

   4.3 由于display属性为none的元素不在渲染树中,对隐藏的元素操作不会引发其他元素的重排。如果要对一个元素进行复杂的操作时,可以先隐藏它,操作完成后再显示。这样只在隐藏和显示时触发2次重排。但是这可能导致浏览器的闪烁。

  4.4 在内存中多次操作节点,完成后再添加到文档中去(可使用fragment元素)。例如要异步获取表格数据,渲染到页面。可以先取得数据后在内存中构建整个表格的html片段,再一次性添加到文档中去,而不是循环添加每一行。

var fragment = document.createDocumentFragment();    // 未使用的虚拟节点,appendChild(fragment)  //append的是里面的子元素

var li = document.createElement('li');
li.innerHTML = 'apple';
fragment.appendChild(li); var li = document.createElement('li');
li.innerHTML = 'watermelon';
fragment.appendChild(li); document.getElementById('fruit').appendChild(fragment);

参考文档:

关于DOM的操作以及性能优化问题-重绘重排的更多相关文章

  1. 前端性能优化--为什么DOM操作慢? 浅谈DOM的操作以及性能优化问题-重绘重排 为什么要减少DOM操作 为什么要减少操作DOM

    前端性能优化--为什么DOM操作慢?   作为一个前端,不能不考虑性能问题.对于大多数前端来说,性能优化的方法可能包括以下这些: 减少HTTP请求(合并css.js,雪碧图/base64图片) 压缩( ...

  2. DOM操作的性能优化

    DOM操作的真正问题在于 每次操作都会出发布局的改变.DOM树的修改和渲染. React解决了大面积的DOM操作的性能问题,实现了一个虚拟DOM,即virtual DOM,这个我们一条条讲. 所以关于 ...

  3. DOM性能瓶颈与Javascript性能优化

    这两天比较闲,写了两篇关于JS性能缺陷与解决方案的文章(<JS特性性能缺陷及JIT的解决方案>,<Javascript垃圾回收浅析>),主要描述了untyped,GC带来的问题 ...

  4. Dom 重绘重排

    https://juejin.im/entry/590801780ce46300617c89b8   DOM 重绘重排

  5. 关于DOM操作的性能优化

    最著名的有关用js操作dom的观点是:js和dom是独立的小岛,用桥实现两者的联系,但桥很窄,要过路费,所以我们要尽最大可能减少过桥的次数.下面代码演示了用js操作dom的innerHTML,且一下修 ...

  6. DOM 操作成本究竟有多高,HTML、CSS构建过程 ,从什么方向出发避免重绘重排)

    前言: 2019年!我准备好了 正文:从我接触前端到现在,一直听到的一句话:操作DOM的成本很高,不要轻易去操作DOM.尤其是React.vue等MV*框架的出现,数据驱动视图的模式越发深入人心,jQ ...

  7. js 性能篇--dom 重绘 重排 节流

    浏览器下载完页面中的所有组件----HTML标记,Js,CSS,图片等之后会解析并生成两个内部数据结构: DOM树  -------- 表示页面结构 渲染树   -------- 表示DOM节点如何显 ...

  8. 学习 CLR 源码:连续内存块数据操作的性能优化

    目录 C# 原语类型 1,利用 Buffer 优化数组性能 2,BinaryPrimitives 细粒度操作字节数组 提高代码安全性 3,BitConverter.MemoryMarshal 4,Ma ...

  9. Attribute操作的性能优化方式

    Attribute是.NET平台上提供的一种元编程能力,可以通过标记的方式来修饰各种成员.无论是组件设计,语言之间互通,还是最普通的框架使 用,现在已经都离不开Attribute了.迫于Attribu ...

随机推荐

  1. Android N开发 你需要知道的一切

    title: Android N开发 你需要知道的一切 tags: Android N,Android7.0,Android --- 转载请注明出处:http://www.cnblogs.com/yi ...

  2. 脑洞大开之采用HTML5+SignalR2.0(.Net)实现原生Web视频

    目录 对SignalR不了解的人可以直接移步下面的目录 SignalR系列目录 前言 - -,我又来了,今天废话不多说,我们直接来实现Web视频聊天. 采用的技术如下: HTML5 WebRTC Si ...

  3. [LintCode]——目录

    Yet Another Source Code for LintCode Current Status : 232AC / 289ALL in Language C++, Up to date (20 ...

  4. Canvas讲解

    1.Canvas是什么? 简单地说canvas是画布,可以进行画任何的线.图形.填充等一系列的操作,而且操作的画图就是js, 提供简单的二维矢量绘图. 2.步骤: <canvas id=&quo ...

  5. kali linux下的arp攻击

    这是我第一篇博客,写的不好请谅解 ____________________________(分割线)_______________________________ 在kali linux系统下自带工具 ...

  6. Android中点击事件的实现方式

    在之前博文中多次使用了点击事件的处理实现,有朋友就问了,发现了很多按钮的点击实现,但有很多博文中使用的实现方式有都不一样,到底是怎么回事.今天我们就汇总一下点击事件的实现方式. 点击事件的实现大致分为 ...

  7. Raspberry Pi(树莓派)上安装Raspbian(无路由器,无显示器)

    一. 准备工作 1. 树莓派主板 型号:树莓派3 B型 处理器:四核64位ARM Cortex-A53 CPU 内核架构:ARMv8 2. 一张大于8G的TF卡(本人用的是32G的,也作为PiLFS用 ...

  8. Configure a bridged network interface for KVM using RHEL 5.4 or later?

    environment Red Hat Enterprise Linux 5.4 or later Red Hat Enterprise Linux 6.0 or later KVM virtual ...

  9. welcome to my cnblog

    博客园总算开通了,以后就分享自己的东西,和大家交流.

  10. 最小生成树(Kruskal算法-边集数组)

    以此图为例: package com.datastruct; import java.util.Scanner; public class TestKruskal { private static c ...