关于自然常数e的理解
关于自然常数\(e\)的理解
By Z.H. Fu
切问录 ( http://www.fuzihao.org )
利息增长模型
在上中学学习对数的时候,我们就学到了一个叫做e的东西(\(e\approx 2.71828\)),后来又学了e的定义,(\(e=\lim \limits_{n\to \infty}(1+\frac{1}{n})^n\)),但是始终缺乏一个直观的理解,为什么e要这么定义,为什么到处都会有他的身影。后来在研究一个增长模型的时候,重新研究了下e的定义,找到了几个关于它的直观的理解。
首先研究这么一个模型,你往银行里存钱,假设银行的利息按年结算,银行每年的利息与你在银行存的总额和时间成正比(即利息=现金总量x利率x时间差),设存入金额为1,利率为p,那么第二年,你在银行的金额增加到了\(1+p\),第三年,你在银行的钱将有\((1+p)(1+p)\),第\(n+1\)年将有\((1+p)^n\)注意这里的时间差都是以年来计算,假设,我们遇到了一个很有耐心的银行,它愿意每天给你结算利息,我们来计算每一天的资金量,第二天的资金量=\(1+\frac{p}{365}\)(利息=总金(1)x利率(p)x时间(\(\frac{1}{365}\))),第365天的资金量为\((1+\frac{p}{365})^{364}\),有没有看到e的雏形?我们再假设银行每秒钟都会算一次利息,一年有n秒,那么,按照之前给出的方法,我们就有年末的总金额=\((1+\frac{p}{n})^n\)当n趋于无穷大时,即银行每时每刻都会给你结算利息,即等于\(e^p\),也就是说,复利的极限竟然和e有关系!
泰勒级数的直观理解
我们换种思路再来思考这个问题,这次我们用利滚利的方式来思考,你的本金在银行放了一年,这些本金产生的利息为设每一时刻的本金为\(c(t)=1\),那么在一年中第t时刻我们拥有的利息为:
\[p_0(t)=\int_0^t p c(t)dt=\int_0^t p dt = pt\]
因而一年下来的利息为p。但是事情还没有结束,由这些利息产生的利息还没有被计算,那么利息产生的利息在t时刻应该为:
\[p_1(t)=\int_0^t p p_0(t)dt=\int_0^t p^2 dt = \frac{p^2t^2}{2}\]
同样的道理,利息的利息,也会产生利息,这个利息又等于:
\[p_2(t)=\int_0^t p p_1(t)dt=\int_0^t p\frac{p^2t^2}{2} dt = \frac{p^3t^3}{3\times 2}\]
依次地推,我们有利息的利息的利息产生的利息在t时刻为:
\[p_3(t)=\frac{p^4t^4}{4!}\]
而这种递推是无穷的,我们把这些本金和利息加载一起就是我们最后拥有的资金,总数为:
\[\begin{aligned}S&= 1+p_0+p_1+\cdots+p_n+\cdots \\ &=\frac{p^0}{0!}+\frac{p^1}{1!}+\cdots +\frac{p^n}{n!}+\cdots \\ &=e^p \end{aligned}\]
其中,t全部被带换成了1。这正是e的泰勒级数展开。
由此可见,我们通过一种模型导出了e的两种表示方式,那么这两种表示方式有没有什么联系呢?实际上,我们讲e的极限式展开,有:
\[\begin{aligned}e^p&=\lim \limits_{n\to \infty}(1+\frac{p}{n})^n\\&=(1+\frac{p}{n})(1+\frac{p}{n})(1+\frac{p}{n})\cdots\end{aligned}\]
我们来观察其中的每一项
1的系数为1
含\(\frac{p}{n}\)的项为\(\lim \limits_{n\to \infty}\binom{n}{1}\frac{p}{n}=\lim \limits_{n\to \infty}n\frac{p}{n}=p\)
含\((\frac{p}{n})^2\)的项为\(\lim \limits_{n\to \infty}\binom{n}{2}(\frac{p}{n})^2=\lim \limits_{n\to \infty}\frac{n(n-1)}{2!}(\frac{p}{n})^2=\frac{p^2}{2!}\)
含\((\frac{p}{n})^k\)的项为\(\lim \limits_{n\to \infty}\binom{n}{k}(\frac{p}{n})^k=\lim \limits_{n\to \infty}\frac{n(n-1)\cdots(n-k+1)}{k!}(\frac{p}{n})^k=\frac{p^k}{k!}\)
因此这些项的和为:
\[S=1+p+\frac{p^2}{2!}+\frac{p^3}{3!}+\cdots+\frac{p^k}{k!}+\cdots=e^p\]
上面这个证明用到了多项式展开向无穷的推广,欧拉曾经在证明\(\sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}\)时用到了这个展开,但在当时还不算严谨,而这个展开推广的合理性则是在一百年后由维尔斯特拉斯给出。
从常微分方程来理解
由以上论述,我们统一了e的泰勒展开与其定义,并给出了相应的物理意义,最后来看看一般情况下我们是怎么解决这个问题的。设每一个时刻的金额数为y,那么我们有:
\[dy=y p dt\]即
\[y'=py\]
这是一个简单的常微分方程,他的解就是\(y=e^{pt}\)
综上我们给出了同一个模型在e的定义、e的泰勒展开、常微分方程三种表示的物理意义。其中,常微分方程的使用最广,而泰勒级数的方式却体现了现代数学的一种无穷递归的思想,这种思想为后来的数学发展起到了相当大的影响作用。
参考文献
[1] http://betterexplained.com/articles/an-intuitive-guide-to-exponential-functions-e/
[2] http://www.guokr.com/article/50264/
关于自然常数e的理解的更多相关文章
- 自然常数 e 的理解与应用
某彩票中奖率是百万分之一,则一个人买一百万张彩票仍不中奖的概率是: (1−1106)106≈1e e 往往出现在: 许多微小事件带来的总体变化 随机性和无穷多:
- 我们数学中常用的自然常数e代表什么?看完长知识了!
我们在学习期间都接触过自然常数e,也知道e ≍ 2.718,学过极限的同学应该也知道 那么大家知道e的含义是什么吗?为啥叫“自然常数”? e的含义可以用一个计算利息的例子来解释. 假如你有1块钱,银行 ...
- 自然常数e的含义
e是一个重要的常数,但是它的直观含义却不像 π 那么明了.我们都知道,圆的周长与直径之比是一个常数,这个常数被称为圆周率,记作 π = 3.14159......可是e代表什么呢? e是“指数”(ex ...
- 自然常数e的由来以及计算机为什么是二进制
背景 昨晚我在看一本书,叫<数学极客>,看到第六章<e:不自然的自然数>,这个数最早开始接触应该是高一的时候,那时候问老师,这个数是怎么来的,老实说,和圆周率一样,是一个常 ...
- Hadoop源代码点滴-自然常数e
数学里的 e 为什么叫做自然底数?是不是自然界里什么东西恰好是 e? https://www.zhihu.com/question/20296247
- 自然常数e的神奇之美
- NS3中一些难以理解的常数
摘要:在NS3的学习中,PHY MAC中总有一些常数,需要理解才能修改.如帧间间隔等.那么,本文做个简单分析,帮助大家理解.针对802.11标准中MAC协议. void WifiMac::Conf ...
- 理解numpy exp函数
exp,高等数学里以自然常数e为底的指数函数 Exp:返回e的n次方,e是一个常数为2.71828 Exp 函数 返回 e(自然对数的底)的幂次方. a = 1 print np.exp(a) a ...
- Machine Learning - 第7周(Support Vector Machines)
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 ...
随机推荐
- Java学习笔记之:Java数组
一.介绍 数组对于每一门编程语言来说都是重要的数据结构之一,当然不同语言对数组的实现及处理也不尽相同. Java语言中提供的数组是用来存储固定大小的同类型元素. 你可以声明一个数组变量,如number ...
- 无法嵌入互操作类型“ESRI.ArcGIS.Display.SimpleFillSymbolClass”。请改用适用的接口。
无法嵌入互操作类型"ESRI.ArcGIS.Display.SimpleFillSymbolClass".请改用适用的接口. 对于这样的问题 先看这个错误所对应的引用时那个,比如这 ...
- 无刷新分页 jquery.pagination.js
无刷新分页 jquery.pagination.js 采用Jquery无刷新分页插件jquery.pagination.js实现无刷新分页效果 1.插件参数列表 http://www.dtan.so ...
- QTP场景恢复之用例失败自动截图
以下代码是在QC里运行QTP来执行脚本过程,当执行过程中发现用例失败后就会自动截图,然后把用例返回到最初始的状态,模拟了场景恢复的机制 Class QCImageErrorCapture Dim qt ...
- 在Ubuntu上为Android增加硬件抽象层(HAL)模块访问Linux内核驱动程序(老罗学习笔记3)
简单来说,硬件驱动程序一方面分布在Linux内核中,另一方面分布在用户空间的硬件抽象层中.接着,在Ubuntu上为Android系统编写Linux内核驱动程序(老罗学习笔记1)一文中举例子说明了如何在 ...
- Android上常见度量单位【xdpi、hdpi、mdpi、ldpi】解读
术语和概念 屏幕尺寸 屏幕的物理尺寸,以屏幕的对角线长度作为依据(比如 2.8寸, 3.5寸). 简而言之, Android把所有的屏幕尺寸简化为三大类:大,正常,和小. 程序可以针对这三种尺 ...
- C++ STL之查找算法
C++STL有好几种查找算法,但是他们的用法上有很多共同的地方: 1.除了binary_search的返回值是bool之外(查找的了返回true,否则返回false),其他所有的查找算法返回值都是一个 ...
- POJ1037A decorative fence(好dp)
1037 带点组合的东西吧 黑书P257 其实我没看懂它写的嘛玩意儿 这题还是挺不错的 一个模糊的思路可能会好想一些 就是大体的递推方程 dp1[][]表示降序 dp2[][]表示升序 数组的含义为长 ...
- bzoj1486: [HNOI2009]最小圈
二分+dfs. 这道题求图的最小环的每条边的权值的平均值μ. 这个平均值是大有用处的,求它我们就不用记录这条环到底有几条边构成. 如果我们把这个图的所有边的权值减去μ,就会出现负环. 所以二分求解. ...
- ASP.NET线程相关配置
1.(maxWorkerThreads * CPU逻辑数量)-minFreeThreads 比如2个CPU默认配置maxWorkerThreads=100,minFreeThreads=176,则同时 ...