2nd order RC Low-pass Filter

Center frequency    fc = 23405.13869[Hz]

Q factor                  Q = 0.333333333333

Sallen–Key topology

http://en.wikipedia.org/wiki/Sallen%E2%80%93Key_topology

A low-pass filter, which is implemented with a Sallen–Key topology, with fc=15.9 kHz and Q = 0.5

这个电路是一个单位增益的电路,改变Sallen-Key 滤波器的增益同时就改变了滤波器的幅频特性和类型。

实际上Sallen-Key 滤波器就是增益为1的Butterworth 滤波器。

Sallen & Key 2nd order low pass filter -

  • Non-inverting

Sallen & Key 2nd order high pass filter - Non-inverting

Sallen-Key Low-pass Filter

http://sim.okawa-denshi.jp/en/OPseikiLowkeisan.htm

Cut-off frequency    fc = 23405.13869[Hz]
Quality factor          Q = 0.5

Butterworth Low-pass Filter

Transfer function

http://mathscinotes.wordpress.com/2011/06/10/filter-design-details/

Figure 4 shows the Sallen-Key circuit, which is a very commonly used circuit for this type of application

.

Analysis of Sallen-Key Circuit

Figure 5 shows a standard Kirchoff’s Voltage Law (KVL) analysis of the Sallen-Key circuit.

I usually do not work with filter equations in the form shown in Figure 5.

I like to normalize the frequency variable, s, relative to the filter bandwidth

Normalized Form

Figure 6 shows the Butterworth equation normalized to the filter bandwidth.

This is the equation form normally shown in the filter design tables.

Component Determination

Figure 7 shows how we can determine the component values required for this implementation

using the equation solving abilities of Mathcad.

We can now generate a plot of the filter magnitude characteristic using these component values

Gain Characteristic

Figure 8 shows the gain characteristic of this design.

As expected, we are seeing 120 dB of ripple attenuation.

The gain at 0 Hz is 5, so that requirement is also met.

Conclusion

This was a good example of a common filter design problem.

I have used both circuit simulators and computer algebra software to design these filters.

I have come to like computer algebra software for this kind of work because it gives me equations.

These equations allow me to see how the output varies as a function of individual component values.

This means that I can see useful approximations.

Multiple feedback topology

Multiple feedback topology is an electronic filter topology which is used to implement an electronic filter by adding two poles to the transfer function.

A diagram of the circuit topology for a second order low pass filter is shown in the figure on the right.

Analog filters and specifications swimming: Input bias current makes a difference

http://e2e.ti.com/blogs_/b/onboard/archive/2013/11/21/analog-filters-and-specifications-swimming-input-bias-current-makes-a-difference.aspx

When designing an analog active filter, you may be overwhelmed with the list of factors to consider.

But, as you start to select your amplifier(s), I suggest that you start with the simple things: input bias current.

Yes, you also need to pay attention to amplifier bandwidth, slew rate, noise, common-mode voltage range (sometimes),

and offset voltage, but dealing with the input bias current has to be the easiest.

First of all, you need to know something about the circuit configurations that you will be using.

The most common configurations in use today are the Sallen-Key and multiple-feedback (MFB) topologies.

These topologies are used in lowpass, highpass, bandpass, and bandstop (notch) filters.

Let’s take a look at second-order, lowpass filters (Figure 1).

Figure 1. Second-order lowpass filters

Notice the resistors that connect directly to the inverting and/or non-inverting terminals.

This is the place where the input bias (IB+and IB-) current flows to create a voltage that looks like the amplifier’s offset voltage.

So, what value of resistors might you expect and what is the allowable amplifier input bias current?

The magnitude of the input bias current primarily depends on the amplifier’s silicon technology.

Figure 2 shows some typical input stages for CMOS and bipolar amplifiers.

The amount of current flowing in or out of the IB+ and IB- terminals depends on the amplifier technology and circuit design,

so it is hard to give an exact answer. However, you can make some general statements.

Figure 2. Typical differential input stages for CMOS (a) and bipolar (b) amplifiers

CMOS amplifiers typically generate input bias currents in a range of up to 400 pA.

If you find units of nanoamps up to several milliamps, that’s probably a bipolar amplifier.

More information about the input bias currents of amplifiers is available in my earlier blog,

How to read a precision op amp data sheet.”

Now, how big are the lowpass filter resistors in Figure 1?

Resistor values depend on the capacitor’s magnitude.

So, let’s first talk about the capacitors.

When designing a filter, whether it uses a lowpass, highpass, bandpass, or bandstop topology,

the capacitor technology should be C0G or NPO.

There are a lot of different types of capacitors such as X7R, Z5U, and Y5V.

But the C0G and NPO capacitors are set apart from the others because they have a low-voltage and low-frequency coefficients.

If these coefficients are not low, the capacitance values change as signals travel through the filter.

When the capacitors change, the filter response also changes.

I will go into more details about these capacitor characteristics next time,

but this fact limits the acceptable range for your filter capacitors.

C0G capacitor values range up to 100 nF.

Given this range, the approximate upper range of the resistors is 30 kOhms from my survey of

Gaussian to 6 dB, linear phase 0.05°,

Butterworth, 0.2 dB Chebyshev, linear phase 0.5°,

Bessel and Gaussian to 12 dB filters.

Now we have something to work with!

In Figure 1a, the voltage error caused by the resistors and IB+ is VOS-IB = (R1 + R2)*IB+.

To get the total offset error of this system you add VOS-IB to the amplifier’s offset voltage (VOS).

If you want the input offset error to be equal to or below 1.22 mV (12-bit LSB in a 5 V system),

then the maximum allowable input bias current for the Figure 1a circuits is 10 nA, with VOS-MAX = 200 uV.

This translates into using CMOS op amps or bipolar op amps with sufficiently low IB and low VOS.

You want to do a little research?

Look into these questions and find your answers by using the Texas Instruments

WEBENCH®Filter Designer program.

http://www.ti.com/tool/filterpro

Active Low-Pass Filter Design 低通滤波器设计的更多相关文章

  1. Sallen-Key Active Butterworth Low Pass Filter Calculator

    RC 2nd Order Passive Low Pass Filter The cut-off frequency of second order low pass filter is given ...

  2. [模拟电路] 2、Passive Band Pass Filter

    note: Some articles are very good in http://www.electronics-tutorials.ws/,I share them in the Cnblog ...

  3. PWM DAC Low Pass Filtering

    [TI博客大赛][原创]LM3S811之基于PWM的DAC http://bbs.ednchina.com/BLOG_ARTICLE_3005301.HTM http://www.fpga4fun.c ...

  4. IIR filter design from analog filter

    Analog filter和digital filter的联系: z变换与Laplace从数学上的关系为: 但这种关系在实际应用上不好实现,因此通常使用biliner transform(https: ...

  5. 使用MATLAB 2019 App Design 工具设计一个 电子日记App

    使用MATLAB 2019 App Design 工具设计一个 电子日记App1.1 前言:由于信号与系统课程需要,因此下载了MATLAB软件,加之对新款的执着追求,通过一些渠道,下载了MATLAB ...

  6. Design Principle vs Design Pattern 设计原则 vs 设计模式

    Design Principle vs Design Pattern设计原则 vs 设计模式 来源:https://www.tutorialsteacher.com/articles/differen ...

  7. Design Principles (设计原则)

    这是我在2018年4月写的英语演讲稿,可惜没人听得懂(实际上就没几个人在听). 文章的内容是我从此前做过的项目中总结出来的经验,从我们的寝室铃声入手,介绍了可扩展性.兼容性与可复用性等概念,最后提出良 ...

  8. [LeetCode] 355. Design Twitter 设计推特

    Design a simplified version of Twitter where users can post tweets, follow/unfollow another user and ...

  9. [LeetCode] Design Twitter 设计推特

    Design a simplified version of Twitter where users can post tweets, follow/unfollow another user and ...

随机推荐

  1. Android服务之Service

    android中服务是运行在后台的东西,级别与activity差不多.既然说service是运行在后台的服务,那么它就是不可见的,没有界面的东西.你可以启动一个服务Service来播放音乐,或者记录你 ...

  2. ECSide标签属性说明之<ec:table>

    <ec:table>标签说明 ◆ 属性: tableId描述: 设置列表的唯一标识,默认为"ec",当一个页面内有多个ECSIDE列表时,必须为每个列表指定不同的tab ...

  3. RPC调用框架比较分析

    什么是RPC: RPC(Remote Procedure Call Protocol)——远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议. 简言之,RPC ...

  4. A+B for Matrices 及 C++ transform的用法

    题目大意:给定两个矩阵,矩阵的最大大小是M*N(小于等于10),矩阵元素的值的绝对值小于等于100,求矩阵相加后全0的行以及列数. #include<iostream> using nam ...

  5. fscanf的返回值未成功输入的元素个数 .xml

    pre{ line-height:1; color:#38ede1; background-color:#5b2814; font-size:16px;}.sysFunc{color:#008080; ...

  6. Ubuntu 16.04 TensorFlow CPU 版本安装

    1.下载Anaconda,官方网站.我下载的时Python 2.7 64bit版本: 2.安装执行命令     bash Anaconda2-4.2.0-Linux-x86_64.sh 设置好目录后等 ...

  7. 任务(Tasks)

    在Eclipse中用TODO标签管理任务,利用这个功能可以方便地将项目中一些需要处理的任务记录下来.我们可以通过在java注释里添加任务标签来标记一个任务,任务可以通过Tasks(任务)视图来察看. ...

  8. 一步步实现Promise

    最近在https://github.com/ThoughtWorksInc/rest-rpc上工作,遇到了一个scala隐式转换的问题,简单的说是要实现这么个东西: implicit def json ...

  9. md5加密算法c语言版

    from: http://blog.sina.com.cn/s/blog_693de6100101kcu6.html 注:以下是md5加密算法c语言版(16/32位) ---------------- ...

  10. Inverse是hibernate双向关系中的基本概念。inverse的真正作用就是指定由哪一方来维护之间的关联关系。当一方中指定了“inverse=false”(默认),那么那一方就有责任负责之间的关联关系,说白了就是hibernate如何生成Sql来维护关联的记录

    <set name ='students' table="students_table" inverse='false'(默认不用写) > <key column ...